
1

Lecture 4: Directory Protocols

• Topics: directory-based cache coherence implementations



2

Split Transaction Bus

• What would it take to implement the protocol correctly
while assuming a split transaction bus?

• Split transaction bus: a cache puts out a request, releases
the bus (so others can use the bus), receives its response
much later

• Assumptions:
only one request per block can be outstanding
separate lines for addr (request) and data (response)



3

Split Transaction Bus

Proc 1

Cache

Proc 2

Cache

Proc 3

Cache

Request lines

Response lines



4

Design Issues

• When does the snoop complete? What if the snoop takes
a long time?

• What if the buffer in a processor/memory is full? When
does the buffer release an entry? Are the buffers identical?

• How does each processor ensure that a block does not
have multiple outstanding requests?

• What determines the write order – requests or responses?



5

Design Issues II

• What happens if a processor is arbitrating for the bus and
witnesses another bus transaction for the same address?

• If the processor issues a read miss and there is already a
matching read in the request table, can we reduce bus
traffic?



6

Scalable Multiprocessors

P1

C1

Mem 1 CA1

P2

C2

Mem 2 CA2

Pn

Cn

Mem n CAn

Scalable interconnection network

CC NUMA: Cache coherent non-uniform memory access



7

Directory-Based Protocol

• For each block, there is a centralized “directory” that
maintains the state of the block in different caches

• The directory is co-located with the corresponding memory

• Requests and replies on the interconnect are no longer
seen by everyone – the directory serializes writes

P

C

Mem CADir

P

C

Mem CADir



8

Definitions

• Home node: the node that stores memory and directory
state for the cache block in question

• Dirty node: the node that has a cache copy in modified state

• Owner node: the node responsible for supplying data
(usually either the home or dirty node)

• Also, exclusive node, local node, requesting node, etc.
P

C

Mem CADir

P

C

Mem CADir



9

Protocol Steps

P1

C1

Mem 1 CA1

P2

C2

Mem 2 CA2

Pn

Cn

Mem n CAn

Scalable interconnection network

• What happens on a read miss and a write miss?
• How is information stored in a directory?

Dir Dir Dir



10

Directory Organizations

• Centralized Directory: one fixed location – bottleneck!

• Flat Directories: directory info is in a fixed place, 
determined by examining the address – can be further
categorized as memory-based or cache-based

• Hierarchical Directories: the processors are organized as a
logical tree structure and each parent keeps track of which
of its immediate children has a copy of the block – less
storage (?), more searching, can exploit locality



11

Flat Memory-Based Directories

• Directory is associated with memory and stores info
for all cache copies

• A presence vector stores a bit for every processor, for
every memory block – the overhead is a function of 
memory/block size and #processors

• Reducing directory overhead:



12

Flat Memory-Based Directories

• Directory is associated with memory and stores info
for all cache copies

• A presence vector stores a bit for every processor, for
every memory block – the overhead is a function of 
memory/block size and #processors

• Reducing directory overhead:
Width: pointers (keep track of processor ids of sharers)
(need overflow strategy), 2-level protocol to combine
info for multiple processors
Height: increase block size, track info only for blocks
that are cached (note: cache size << memory size)



13

Flat Cache-Based Directories

• The directory at the memory home node only stores a
pointer to the first cached copy – the caches store
pointers to the next and previous sharers (a doubly linked
list)

Main memory

Cache 7 Cache 3 Cache 26



14

Flat Cache-Based Directories

• The directory at the memory home node only stores a
pointer to the first cached copy – the caches store
pointers to the next and previous sharers (a doubly linked
list)

• Potentially lower storage, no bottleneck for network traffic,

• Invalidates are now serialized (takes longer to acquire
exclusive access), replacements must update linked list,
must handle race conditions while updating list



15

Data Sharing Patterns

• Two important metrics that guide our design choices:
invalidation frequency and invalidation size – turns out
that invalidation size is rarely greater than four

• Read-only data: constantly read, never updated (raytrace)

• Producer-consumer: flag-based synchronization, updates
from neighbors (Ocean)

• Migratory: reads and writes from a single processor for a
period of time (global sum)

• Irregular: unpredictable accesses (distributed task queue)



16

Protocol Optimizations

C1 C2

Mem

1 2

3

4

5

C1 C2

Mem

1
2 34

C1 C2

Mem

1
2

3

4

Intervention Forwarding Reply Forwarding

Request Response

C1 attempts to read
a block that is in

Modified state in C2



17

Serializing Writes for Coherence

• Potential problems: updates may be re-ordered by the
network; General solution: do not start the next write until
the previous one has completed

• Strategies for buffering writes:
buffer at home: requires more storage at home node
buffer at requestors: the request is forwarded to the
previous requestor and a linked list is formed
NACK and retry: the home node nacks all requests
until the outstanding request has completed



18

Title

• Bullet


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

