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Abstract

With the trend towards increasing number of processor
cores in future chip architectures, scalable directory-based
protocols for maintaining cache coherence will be needed.
However, directory-based protocols face well-known prob-
lems in delay and scalability. Most current protocol op-
timizations targeting these problems maintain a firm ab-
straction of the interconnection network fabric as a com-
munication medium: protocol optimizations consist of end-
to-end messages between requestor, directory and sharer
nodes, while network optimizations separately target low-
ering communication latency for coherence messages. In
this paper, we propose an implementation of the cache co-
herence protocol within the network, embedding directories
within each router node that manage and steer requests to-
wards nearby data copies, enabling in-transit optimization
of memory access delay. Simulation results across a range
of SPLASH-2 benchmarks demonstrate significant perfor-
mance improvement and good system scalability, with up to
44.5% and 56% savings in average memory access latency
for 16 and 64-node systems, respectively, when compared
against the baseline directory cache coherence protocol.
Detailed microarchitecture and implementation characteri-
zation affirms the low area and delay impact of in-network
coherence.

1. Introduction

With Moore’s law furnishing chip designers with billions
of transistors, architects are increasingly moving towards
multi-core architectures as an effective way of dealing with
escalating design complexity and power constraints. Com-
mercial designs with moderate numbers of cores have been
announced [1–3] with shared memory architectures main-
tained with snoopy cache coherence protocols. In future
generations, as the number of cores scales beyond tens,
more scalable directory-based coherence protocols will be
needed. However, there are well-known problems with the
overhead of directory-based protocols: each access needs to
first go to the directory node to discover where data is cur-
rently cached, or to uncover the sharers so they can be inval-
idated. These traversals to and from the directory node be-
come increasingly costly as technology scales [4]. The stor-
age overhead of directory-based protocols is also a concern,
with full-map directories taking up substantial overhead in
area-constrained multi-core chips, while limited directories
trade off storage with increased communication delays and
bandwidth needs.

There have been a plethora of protocol optimizations
proposed to alleviate the overheads of directory-based pro-
tocols (see Section 4). Specifically, there has been prior
work exploring network optimizations for cache coherence
protocols. However, to date, most of these protocols main-
tain a firm abstraction of the interconnection network fabric
as a communication medium – the protocol consists of a
series of end-to-end messages between requestor nodes, di-
rectory nodes and sharer nodes. In this paper, we investigate
removing this conventional abstraction of the network as
solely a communication medium. Specifically, we propose
an implementation of the coherence protocol and directories
within the network at each router node. This opens up the
possibility of optimizing a protocol with in-transit actions.

Here, we explain in-network coherence in the light of
the classic MSI (Modified, Shared, Invalid) directory-based
protocol [5] as an illustration of how implementing the pro-
tocol within the network permits in-transit optimizations
that were not otherwise possible

Figure 1 illustrates how reads and writes can be opti-
mized with an in-network implementation. In Figure 1(a),
node B issues a read request to the home directory node H,
which then proceeds to instruct a current sharer, node A, to
forward its data to node B. It consists of three end-to-end
messages: B to H, H to A, and A to B. Moving this proto-
col into the network allows node B to “bump” into node A
while in-transit to the home node H and obtain the data di-
rectly from A, reducing the communication to just a single
round-trip between B and A. To investigate the potential of
our approach, we characterize the ideal hop count for each
read request given oracle knowledge of where the closest
valid cached copy is. For this investigation, we used the 16-
node simulation infrastructure of the baseline MSI directory
protocol which we describe in Section 3 with the nominal
configuration specified in Table 2. The baseline hop count
for reads is defined as the distance from the node injecting
the read request, to the home node, to the first sharer (if
any) and back to the requesting node. The ideal hop count
for reads is defined as the distance from the node injecting
the read request to the closest node which shares the data
(at the time of the read request issue), and back. If there
are no active sharers, then the ideal hop count for reads is
equal to that of the baseline. Results show a significant re-
duction in hop count of up to 35.8% (19.7% on average) can
be realized for reads.

Next, Figure 1(b) illustrates optimization scenarios for
write accesses with in-network coherence. In the original
MSI protocol, a write request message needs to go from C
to H, followed by invalidations from H to A and B and cor-
responding acknowledgments from A and B to H, before
the request can be granted to node C. An in-network imple-
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Figure 1. In-network optimization scenarios.

mentation allows A and B to start percolating invalidations
and the accompanying acknowledgments once C “bumps”
into them enroute to H. This in-transit optimization can re-
duce write communication from two round-trips to a single
round-trip from C to H and back. To estimate the corre-
sponding ideal hop count for writes, we assume that the
invalidation of the sharer furthest from the directory node
occurs when the write request is injected into the network.
Thus, if the furthest sharer is farther from the directory node
than the requesting node, the write request must wait at the
directory node until the acknowledgement arrives before the
response can be sent, and the ideal write hop count will be
that from the furthest sharer to the directory node, then from
the directory node to the requesting node. Otherwise, the
ideal hop count for writes will be the round-trip distance
between the requesting node and the directory node. Com-
pared to the baseline of two round trips, one between the
requesting node and the directory node and one between the
furthest sharer and the directory node, our in-network opti-
mization can potentially reduce up to 32.4% (and 17.3% on
average) in hop count for writes.

Our contributions in this work are summarized as fol-
lows:
• We propose an approach to cache coherence for chip

multiprocessors where the coherence protocol and di-
rectories are all embedded within network routers.

• Our approach has a low hardware overhead which
quickly leads to hardware savings, compared to the
standard directory protocol, as the number of cores per
chip increases.

• Our protocol demonstrates good, scalable performace,
with 27.2% and 41.2% decreases in read and write la-
tency on average for a 4-by-4 network, and 39.5% and
42.8% improvements for reads and writes respectively
for an 8-by-8 network for a range of SPLASH-2 bench-
marks. Note that the improvement in memory access
latency exceeds the ideal hop count reduction as it in-
corporates the savings garnered from not traversing ex-
tra router pipelines at intermediate and end nodes that
is only possible as a result of migrating coherence into
the network.

In the rest of the paper, we will describe in-network
cache coherence in detail, walking through the various pro-
tocol actions, the state diagram and pseudo-code, the im-
plementation of the router microarchitecture and pipeline,
as well as how we verify its sequential consistency formally
using Murφ [6] and runtime verification in Section 2. In
Section 3 we present our simulation results. Section 4 dis-
cusses and contrasts against prior related work while Sec-
tion 5 concludes the paper.

2. In-network cache coherence

The central thesis of our in-network cache coherence is
the moving of coherence directories from the nodes into the
network fabric. In this work virtual trees, one for each cache
line, are maintained within the network in place of coher-
ence directories to keep track of sharers. The virtual tree
consists of one root node (R1 in Figure 2) which is the node
that first loads a cache line from off-chip memory, all nodes
that are currently sharing this line, as well as the intermedi-
ate nodes between the root and the sharers thus maintaining
the connectivity of the tree. In addition, the virtual tree is
always connected to the home node (H in Figure 2) which
is statically assigned for each memory address. The nodes
of the tree are connected by virtual links (shown as → in
Figure 2) with each link between two nodes always point-
ing towards the root node. These virtual trees are stored in
virtual tree caches at each router within the network. As
reads and writes are routed towards the home node, if they
encounter a virtual tree in-transit, the virtual tree takes over
as the routing function and steers read requests and write
invalidates appropriately towards the sharers instead.

Here, as an illustration, we will discuss the in-network
implementation of the MSI protocol [5], a classic directory-
based cache coherence protocol. In MSI, each cache line is
either Invalid, i.e. the local cache does not have a valid copy
of this data; Modified, i.e. the local cache has the only copy
of the cached data in the system and it is dirty, or Shared,
i.e. the local cache contains a valid, read-only copy of the
data, and furthermore other caches may also have read-only
copies. The data cache line states remain unchanged in an
in-network implementation.

2.1. In-network protocol

The in-network MSI protocol is illustrated in Figure 2,
which depicts various scenarios that we will use to describe
it. Section 2.2 follows with the detailed pseudo-code and
state diagram of in-network cache coherence.

Read accesses. When a node reads a cache line that
is not locally cached, it sends a read request message, say
Read1 of Figure 2(a). If the requesting node is not part of
the virtual tree associated with the read address, the read
request message is simply routed towards the home node
for its address, just as is done in the baseline MSI protocol
(Step 1). At the home node, one of two things may hap-
pen. First, if the home node does not have any outgoing
virtual tree links, then no cache in the network contains a
valid copy of the data, and therefore it must be loaded from
off-chip memory (Step 2). Once the line is loaded, the home
node generates a read reply message back to the original re-
questing node, which constructs virtual links towards the
requesting node, pointing in the direction of the root node.
The message is also routed along the physical link corre-
sponding to the newly created virtual link (Step 3).

In another scenario, say Read2 of Figure 2(b), should the
read request message encounter a node that is a part of the
virtual tree enroute (Step 4), it starts following the virtual
links towards the root node instead (Step 5). Each router
directs the message along the local corresponding physi-
cal link towards the root. A read request message termi-
nates when it encounters a node, not necessarily the root,
that has valid data cached for the address contained in the
message, or when it reaches the home node and no tree ex-
ists, in which case the request must retrieve the data from
main memory. A read reply message is then generated and
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reflect the virtual tree links, while bold, curved arrows reflect actions prompted by the protocol.

sent back towards the original requester node, along with
the data (Step 6). This in-transit optimization of read la-
tency is the result of our proposed in-network implementa-
tion. When a read reply message routes back to the original
requesting node, it makes the following decision at each hop
along the way: if there exists a virtual link which connects
to a node that is one hop closer to the requester node, it
routes along the corresponding physical link. If, however,
there is no such virtual link, then the message constructs
a virtual link towards the requesting node, pointing in the
direction of the root node.

Write accesses. A write begins similarly to a read in that
a write request message is sent towards the home node (Step
7 for Write1 message of Figure 2(c)). As in the original MSI
protocol, the home node arbitrates between multiple write
requests and ensures coherence by delaying the updating
of a cache line until all invalidations have been sent and
acknowledged.

In the simplest case, there are no virtual links for this ad-
dress at the home node, and the home node does not hold a
valid copy of the cache line, i.e., no virtual tree exists. In
this case, the home node sends a write reply message back
to the original requesting node, granting permission to mod-
ify the data. Similarly to a read reply message, a write reply
message constructs virtual links as it routes towards the re-
questing node that now becomes the root node. Once the
write reply reaches the original requesting node, the local
data cache line is written and the dirty bit is set. As in the
original MSI protocol, if a read request or teardown mes-
sage comes by later and the dirty bit is set, the cache line is
written back to memory.

If, however, as in the case for Write1, a virtual tree exists
upon arrival of the write request, then the tree must first be
torn down (invalidated). Here, the in-network implemen-
tation again enables in-transit optimization of invalidation
delay. Enroute to the home node, the first virtual tree node
that the write request message encounters will result in the
spawning of teardown messages along all virtual links off
that node (Step 8). These teardown messages recursively
propagate through the tree until they reach the leaves of the
tree; a teardown message determines it has reached a leaf
when the current node has only one virtual link. At a leaf, a
teardown message is turned into an acknowledgment mes-
sage and sent back up the tree towards the home node. Each
time an acknowledgment message arrives at a node it re-
moves the link on which it arrived and then the node tests to
see how many virtual links remain connected to it. If only
one remains then the node has become a leaf and the ac-
knowledgement is forwarded out that link. The exception
to this is the home node; all acknowledgements terminate
at the home node. In this way, when the home node has

no more virtual links, the entire virtual tree has been suc-
cessfully torn down, and it is safe to send out a write reply
message to the original requesting node (Step 9). From this
point everything proceeds as discussed above for the case
where no tree was found to exist for the given address. Mes-
sages which reach the home node and hit trees which are in
the process of being torn down are queued until the given
tree is completely torn down.

Evictions. In the event of a conflict miss in the virtual
tree cache, the network needs to evict the entire virtual tree
of which the victim tree cache line is a member. This is done
to ensure that trees do not become disjoint. An eviction be-
gins at the router at which the conflict occurs and generates
a teardown message that percolates through the tree just as
described above. Once the local tree cache entry has been
invalidated, the original action may proceed.

For instance, say a new read request Read3 occurs fol-
lowing the completion of Write1. It first heads towards its
home node H ′ (Step 10), and upon its return, attempts to
construct a virtual tree back. Enroute, it causes a conflict
miss with Write1’s tree (Step 11), and forces its eviction,
which is achieved through the percolation of teardown mes-
sages through the tree (Step 12). Once the local tree cache
entry of Write1 is successfully invalidated, the read reply
message will continue and complete the tree construction
(Step 14).

Because a read or write reply may have to wait for a local
tree cache line to become available for a new virtual tree,
that is, for the evicted tree’s teardown messages to propa-
gate out to the leaves and back to the current node, a reply
message may become temporarily stalled. This stalling al-
lows the possibility of deadlock if two or more trees are si-
multaneously being created and they are attempting to tear
down each other. We implement a timeout-based deadlock
recovery scheme: if a reply message runs into another tree
and initiates a teardown of that tree, but the local tree cache
line is not invalidated within a timeout interval (30 cycles
for all experiments in this paper), the construction of the
new tree is abandoned by transforming the reply message
back into a request message at the intermediate node. At
the same time, a teardown message initiates the removal of
the partially constructed tree. The new request message is
then held at the home directory node for a random backoff
interval (between 20 and 100 cycles for all experiments).
Section 3.5 explores and shows that this deadlock recovery
scheme has little impact on overall memory access latency.

Should a read or write request message collide with a
teardown message, such as if a read request is following a
virtual tree that is in the process of being torn down, the
router redirects it towards its home node, where it will wait
until the tree has been completely torn down before pro-



Figure 3. State diagrams of (a) the tree cache lines and (b) the
data cache lines in our protocol. Bold and italicized messages de-
note the causes and results of transitions, respectively.

gressing again. This is shown as Step 13 in Figure 2(d).
Read4 heads towards the home node and intercepts the tree
at a point where it has already been partially torn down and
so it continues to the home node to wait until the tree has
been completely removed.

Finally, to reduce the average time that write requests
spend waiting at the home node for trees to be torn down,
we implement a proactive eviction strategy. At each node a
write request visits on its way to the home node, if there is
no existing tree for the requested address, but the matching
set of the tree cache (where a matching tree would exist) is
full, it generates a teardown message for the least recently
used tree in that set. This increases the chances that a write
request (whether the current or a future one) will arrive at
the home node and be able to begin constructing a tree with-
out having to invalidate an existing tree.

Victim Caching. One of the drawbacks from having the
virtual tree coherence structure distributed across multiple
nodes is that a single tree can simultaneously occupy multi-
ple tree cache lines across the network; this is in contrast to
a directory-based protocol where all the information about
all of the sharers exists in only one directory cache entry in
the network. As a result, for equivalent directory and tree
cache sizes per node, our protocol cannot actively cache
as many blocks of data in the network at any given time.
Therefore, we implemented an optimization where the root
node of a tree sends its data to the home node when it is
torn down; if the data is dirty, then it must be written back
to main memory anyway, and if it is clean, then the data is
piggybacked in the acknowledgement message which prop-
agates up the tree that must eventually terminate at the home
node as well. Now, whenever a read request reaches the
home node, if there is no matching tree in the network, it
checks the L2 cache of the home node. If the data is there,
it uses that copy to send back to the requesting node; oth-
erwise, it retrieves the data from main memory. Addition-
ally, whenever a new tree is being constructed, the matching
cache line in the local L2 cache (if it exists) is invalidated to
maintain coherence (discussed further in Section 2.4). We
also implemented this optimization in the baseline directory
protocol in order to ensure a fair comparison.

2.2. Protocol pseudo-code and state diagram

In Table 1 we present a high-level version of the defi-
nition of the protocol at each node. The pseudo code de-
scribes the algorithm which operates on each message type
that arrives at a router. The difference between the state di-
agrams of a tree cache line and a data cache line is depicted
in Figure 3. The state diagram of a line in the data cache
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is the same as that for the typical MSI protocol and is not
altered by our in-network protocol, but transitions are now
triggered by our specific in-network coherence messages.
A tree cache line can be in one of only three states: invalid,
valid (i.e. part of an active tree), or touched (part of an ac-
tive tree which is in the process of being torn down). A tree
cache line can only transition from an invalid to a valid state
or from a touched to an invalid state by messages which
have the same memory address. A tree cache line can also
only transition from a valid to a touched state by a teardown
message of the same address, although messages of other
addresses can evict tree cache lines and generate teardown
messages of the evicted address, indirectly causing the tree
cache line to transition in the next cycle. Table 1 and Fig-
ure 3 show that the definition of in-network cache coherence
in terms of message types permits a simple router microar-
chitectural implementation that we will detail next.

2.3. In-network implementation

Router microarchitecture. Figure 4 sketches the router
microarchitecture and pipeline of the proposed in-network
implementation. The only difference in the router microar-
chitecture that implements the proposed protocol versus a
typical interconnection network router is the addition of the
virtual tree cache. In a conventional network router [7], the
first flit (head) of a packet first goes through the Routing
pipeline stage to determine the output port it should request
for. Next, it goes through the Virtual Channel Allocation
stage to obtain a virtual channel for that output port. If suc-
cessful, it moves onto the Switch Allocation stage to gain
passage through the switch, before finally traversing the
crossbar and link (Switch and Link Traversal stages) onto
the next router. Subsequent body and tail flits simply fol-
low the route that is reserved by the head flit, linked via the
virtual channel ID stored in each flit.

In our proposed in-network implementation, a new
pipeline stage is added – that for accessing the virtual tree
cache. Like the Routing stage, it serves to steer head flits
towards the appropriate output ports. Unlike in a conven-
tional router, it does not guide head flits towards their desti-
nations but instead points them towards caches housing the
most up-to-date data requested. In the same way as a regular
data cache, the memory address contained in each packet’s



Table 1. Pseudo code of in-network cache coherence protocol kernel.
Read request (RD REQ) Write request (WR REQ)
if Current node is part of the tree and has valid data then if Current node is the home node then

Get the data from the node and generate a RD REPLY if A tree exists for this message’s address
else if Current node is part of the tree but does not have valid data Generate a TEARDOWN message for this tree

Route this message in the direction of the root else Generate a WR REPLY message
else if Current node is not part of the tree and is the home node else {if this message conflicts with an existing tree or

if Data is cached locally at the home node then the matching set is fully occupied with active trees
Get the data from the local node and generate a RD REPLY Generate a TEARDOWN message for the matching tree or the LRU tree

else Get the data from main memory and generate a RD REPLY Route this message towards the home node using x-y routing}
else Route this message towards the home node using x-y routing Read reply (RD REPLY)
Write reply (WD REPLY) if Message has exceeded timeout interval then
if Message has exceeded timeout interval then Delete this message and Generate a RD REQ message

Delete this message and Generate a RD REQ message Generate a TEARDOWN message for this tree; break
Generate a TEARDOWN message for this tree; break if Current node is the requester node then

if Current node is the requester node then if There is an invalid line in the matching set of the T$
if There is an invalid line in the matching set of the T$ Validate this line and set the appropriate link bit ([N,S,E,W])

Validate this line and set the appropriate link bit ([N,S,E,W]) (T$: Invalid → Valid)
(T$: Invalid → Valid) Write the data to the node’s cache (D$: → Shared)
Write the data to the node’s cache (D$: Invalid → Modified) else Issue a TEARDOWN message for the address of the LRU line in

else Issue a TEARDOWN message for the address of the LRU line in the matching set of the T$
the matching set of the T$ Wait until there is an invalid T$ line

Wait until there is an invalid T$ line else if Current node already belongs to the tree and there is a link in the
else {if There is an invalid line in the matching set of the T$ then tree which leads one hop closer to the requester then

Validate this line and set the appropriate link bit (T$: Invalid → Valid) Route this message out that link
Route this message one hop closer to the requester using x-y routing else if Current node already belongs to the tree but there is no link in the

else Issue a TEARDOWN message for the address of the LRU line in tree which leads one hop closer to the requester then
the matching set of the T$ Route this message, using x-y routing, to the next node which is

Wait until there is an invalid T$ line} one hop closer to the requester
Acknowledgement (TD ACK) Construct the new link in the tree by setting the appropriate link bit
Clear the appropriate link bit for this T$ line else {if There is an invalid line in the matching set of the T$ then
if This node is now a leaf Validate this line and set the appropriate link bit (T$: Invalid → Valid)

Send a TD ACK message out on the only remaining link at this Route this message one hop closer to the requester using x-y routing
node for this tree else Issue a TEARDOWN message for the address of the LRU line in

Invalidate this T$ line (T$: Touched → Invalid) the matching set of the T$
else Delete this message Wait until there is an invalid T$ line}
Teardown (TEARDOWN)
if There is no matching T$ line at this node or this T$ is touched then Delete this message
else {Touch this T$ line (T$: Valid → Touched); Invalidate the local data cache line (D$: → Invalid)

Generate and send TEARDOWN messages out all links in the tree except for the one on which this message arrived
if This is a leaf node then {Generate a TD ACK message}; Delete this message

header is first parsed into < tag, index,o f f set >; if the tag
matches, there is a hit in the tree cache, and its prescribed
direction(s) is used as the desired output port. Otherwise,
the default routing algorithm determines the desired out-
put port. The virtual tree cache can be accessed in parallel
with the routing pipeline stage and sized appropriately to
lower the impact to the overall router pipeline delay while
ensuring a low miss rate. Body and tail flits experience no
change to the router pipeline; they still follow the route that
is reserved by the head flit. Note that accessing the data
cache, to read or write a data cache line, still occurs above-
network, through the cache controllers that interface with
the network. Hence, the packet will go through the router
pipeline and leave through the router’s ejection port, be in-
terpreted by the interface logic which will read/write the
required line and appropriate messages will be re-injected
back into the router.

Virtual tree cache organization. As shown in Fig-
ure 4(a), each entry of the virtual tree cache consists of 9
bits (in addition to the tag bits) for a 2-dimensional net-
work: a virtual link field with one bit per north, south, east,
west (NSEW) direction (4 bits); two bits to describe which
link leads to the root (2 bits); a busy bit (1), an outstanding
request bit (1), and a bit designating whether the local node
holds a valid copy of the data.

The virtual link bit field has a bit set for each physical
link which is also a virtual link for the given address. Since
a node can by definition have only one virtual link leading
to the root node, we only need two bits to encode which
link it is. The busy and outstanding request bits are both

used to maintain sequential consistency and necessary even
for the baseline MSI protocol. The busy bit only applies to
the home node; when set, it means that the home node is
touched and in the process of being torn down. The out-
standing request bit is set if the given node has sent a re-
quest message (read or write) for that address but has yet to
receive a reply.

2.4. Verification of coherence and sequential con-
sistency

The baseline MSI directory protocol by itself ensures
coherence but not sequential consistency. Additional con-
straints are needed to guarantee the latter property (see Re-
quirement 4 below). The proposed in-network protocol can
therefore be implemented with or without sequential con-
sistency. In this work, we enforce additional requirements
and ensure sequential consistency.

Here, we first discuss intuitively why in-network coher-
ence is sequentially consistent, listing the requirements en-
forced in our implementation and elaborating on two sce-
narios which, if handled differently, could violate sequential
consistency or coherence. We then discuss how we veri-
fied the sequential consistency of in-network coherence for-
mally using Murφ and at run-time for each simulation run.

Requirements enforced in in-network coherence to en-
sure sequential consistency:

1. If a request arrives at the home node and the tree is in the process
of being torn down then the request message is queued until the tree



cache line has been completely removed.
2. When a read reply obtains its data from the victimized copy at the

home node’s local data cache, that data cache line is invalidated.
3. If there is valid data in the home node’s local cache upon processing

a write reply (that is, a new tree is being constructed), that data is
invalidated.

4. A requesting node waits for the corresponding reply message to re-
turn before issuing the next request message.

Requirement 1 ensures that read requests do not retrieve
data which is about to be overwritten (possibly reading an
old value after a new value has been written to main mem-
ory) and that the construction of new virtual trees does not
interfere with old trees. Requirements 2 and 3 enforce se-
quential consistency in the face of victim caching. Require-
ment 4 ensures that reads do not complete before writes of
different addresses, leading to the classic violation of se-
quential consistency described in [8]. To further illustrate
these constraints, we describe two scenarios which would
violate the sequential consistency without them.

In the first scenario, consider a read request which inter-
cepts a tree that is in the process of being torn down. This
possible scenario is split into two mutually exclusive cases:
either the matching tree cache line at the given node is in
the touched state, or it is in the valid state. In the first case,
the read request behaves as if there were no tree at all; read
requests will never attempt to add links to a tree cache line
in the touched state, or to follow a tree which it knows to
be in the process of being torn down, or to transition a tree
cache line from touched to valid. So the read request will
proceed to the home node, where it must wait until the tree
has been completely removed from the network (Require-
ment 1). In the second case, the read request will construct
a new link from the intercepted node, or follow the links in
the tree towards the root node. This is allowed because if
a teardown message comes along after the read request has
constructed a new link, the teardown message will simply
propagate out the new link as if it had been a part of the tree
from the start.

For the second scenario, consider the victim caching op-
timization. This is coherent because there is never a valid
victim in the home node’s data cache unless there is no ac-
tive tree in the network. This follows from Requirements 2
and 3. Thus, the value of the cached victim data can never
differ from the current copy in main memory. As a result,
a subsequent read to this copy is equivalent to a read from
main memory.

Formal verification. We use Murφ [6], a model check-
ing tool, to verify the sequential consistency of the back-
bone of our proposed in-network MSI implementation. We
specified state variables of the protocol, the transitions per-
mitted, as well as the rules to be checked exhaustively
in the Murφ specification language. Due to the exhaus-
tive nature of the search, Murφ confines its applicability to
finite-state machines. We identified and verified the micro-
operations of data access, e.g., read/write, and correspond-
ing node/network operations, down to the detail of the ac-
tual message types. We encoded rules including sequential
consistency constraints; for example, write operations to the
same memory address must be observed in the same order
by all the processor nodes. In this Murφ model, to allow
for tractable analysis, we permit multiple concurrent reads
and up to two concurrent writes. Our Murφ specification
consists of 1227 lines of code, and generates on the order
of 100,000 states during the model-checking. The end re-
sult showed Murφ verifying that our in-network MSI im-
plementation is sequentially consistent.

Runtime verification. Finally, to give more confidence
in our protocol, we log every memory operation as it occurs

in our simulations to verify the coherence. As each read
reply returns to its requesting node and the value is written
to the local data cache, we check the value being written to
the data cache against the value held in main memory. Our
simulations showed no instances of a read which returns a
value different from main memory.

To verify sequential consistency, at runtime we generate
a total order of all tree accesses. An access is defined as
occurring when a value is read from main memory or from
an existing tree, or when a new tree is created to satisfy a
write request. We generate a program order of all memory
access replies for each node in the network. These replies
are defined as occurring only when a read reply or write re-
ply message reaches the requesting node (and the local data
cache is updated). Sequential consistency is enforced if the
program order (the sequence of reads and writes) of each
node appears in that order in the total order. Our simula-
tions showed that this condition holds true across all runs.

3. Simulation Results

We implemented a trace-driven architectural simulator
which models the detailed on-chip memory-network mi-
croarchitecture of CMPs. Within the CMP, each on-chip
processor is equipped with a two-level local cache that in-
terfaces with a router. These on-chip routers form a co-
herent networking layer supporting the distributed on-chip
caches. Across all addresses, the home directory nodes are
statically assigned based on the least significant bits of the
tag, distributed across all processors on the entire chip. We
chose to implement trace rather than execution-driven simu-
lation to allow for tractable simulation times, given the large
number of experiments run. Full-system simulation is very
slow and scales superlinearly with the size of the network.

The memory access traces are gathered by running a
set of SPLASH-21 benchmarks [9] on Bochs [10], an x86
instruction-level multiprocessor simulator with embedded
Linux 2.4 kernel, similar to the methodology used in [11].
Using Bochs, our baseline configuration is a 16-way CMP
connected in a 4-by-4 mesh topology. Each benchmark is
spawned into 16 threads and executed concurrently among
the CMP.

Our simulator tracks read and write memory access la-
tencies, which include the round-trip delay from on-chip
caches through the network interface, the network (includ-
ing contention), and off-chip accesses to main memory. For
the directory-based MSI protocol, the latencies include the
access time through the network interface to directories at
the home nodes. For the in-network implementation, this
includes the delay contributed by each virtual tree cache ac-
cess at intermediate routers.

3.1. Performance of in-network cache coherence

Table 2 shows the detailed simulator configuration used
in this experiment. For the directory-based protocol, each
router consists of five pipeline stages. For comparison, the
Alpha 21364 router has a 13-stage pipeline, 6 of which are
delay cycles associated with the chip-to-chip link interface
that is not applicable to on-chip networks, two are error-
correcting cycles, while the router pipeline takes up five
cycles [7, 12]. To support in-network cache coherence the

1Abbreviations used throughout the paper: bar, barnes; rad, radix; wns,
water-n2; wsp, water-spatial; ocn, ocean; ray, raytrace.
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Figure 5. Reduction in average read and write access latencies
for the in-network implementation of the MSI directory protocol as
compared to the standard directory protocol.

virtual tree cache lookup introduces extra delay, which is
a function of the tree cache configuration. The best tree
cache configuration was arrived through a detailed investi-
gation of alternative tree cache organizations (Section 3.2):
a 4K-entry virtual tree cache that is 4-way set-associative.
The virtual tree cache is assumed to be maximally ported;
there is a read and write port for each of the 5 router ports,
as having fewer ports requires additional logic for dynam-
ically arbitrating between these ports which will hurt the
critical path of the router pipeline. The tree cache size is
calculated based on the number of entries as well as each
entry’s size, which consists of the 19-bit tag and the 9-bit
virtual tree cache line. Evaluations of the tree cache ac-
cess time were performed using Cacti [13] (Table 3 of Sec-
tion 3.2). For this best-performing configuration, the access
time is two clock cycles. As shown in Figure 4(b), the vir-
tual tree cache is accessed concurrently with routing lookup,
so for the in-network implementation, the router pipeline
increases from 5 to 6 cycles. For a fair comparison, the
baseline directory-based cache coherence protocol is also
configured with a 4K-entry, 4-way set associative directory
cache at each node’s network interface.

For the memory hierarchy, we assume a 2MB L2 cache
per on-chip node, and 4GB off-chip main memory. Access
latency to the L2 cache is derived from Cacti to be 6 cy-
cles, while off-chip main memory access delay is assumed
to be 200 cycles. For the directory-based protocol, direc-
tory access latency is modeled as a 2-cycle round-trip (from
ejection port back to injection port) through the network in-
terface at the cache controller after the router traversal.

The average read and write memory latency reductions
are presented in Figure 5. Among these 8 benchmarks, the
proposed in-network cache coherence protocol reduces av-
erage read access latency by 27.1% and up to 35.5%. Write
latency is reduced by 41.2% on average and up to 53.6%.
As discussed in Section 1, our protocol provides a greater
maximum possible savings for reads than for writes, so it is
somewhat counter-intuitive that for all but one benchmark
in Figure 5 the average write latency reduction is greater
than that of the reads. However, this is readily explained
by the fact that these benchmarks do not exhibit a great

Table 2. Simulated memory-network configuration. System is
clocked at 500MHz at 0.18µm.

Tree or directory Value Network-memory Value
cache config. configuration
Entries 4K Base router pipe. 5 cyc.
Associativity 4-way Routing X-Y
Access latency 2 cyc. L2 cache line size 8 words
Read ports 5 L2 cache assoc. 8-way
Write ports 5 L2 Access 6 cyc.
Size (per entry) 27 bits Directory access 2 cyc.
eviction policy LRU Main mem. access 200 cyc.

amount of data sharing. In fact, for all but one of the bench-
marks, greater than 90% of the virtual trees created span
only one or two valid and shared copies of a particular line
of data. Thus, there are relatively few opportunities for in-
transit “bumping” into shared cached data enroute to the
home node. Significant savings for reads are still achieved
because a reduced hop count is just one part of the overall
potential for latency reduction; the other is the advantage of
not having to leave the network layer as frequently. In our
case, when a read request reaches the directory node, it is
immediately redirected in the direction of the current copy
of the data, assuming a hit in the tree cache; this scenario is
compared to the baseline protocol wherein the read request
must leave the router, access the directory cache on the lo-
cal node, and then be reinjected into the network, whether
there is a current copy of the data in the network or not. This
results in an extra router pipeline traversal as well as the
cost of accessing the directory cache. In our protocol writes
exhibit the same opportunities for eliminating extraneous
router pipeline traversals, but in addition to this, there is a
significant hop count reduction due to the proactive evic-
tions that are triggered by in-transit invalidations: as write
requests travel to the home node, they initiate the tearing
down of trees that are likely to lead to capacity conflicts.
Thus, when a write request reaches its home node, it will
spend fewer cycles on average waiting for an available tree
cache line before constructing a tree.

The other noteworthy trend of Figure 5 is the variation
in average read access latency reduction. Particularly, lu
and rad exhibit the least amount of savings. In our proto-
col, we would expect to see a correlation between the size
of the virtual trees and the observed savings since if each
tree spans more active sharers, it is more likely that subse-
quent read requests will run into such an active sharer and
avoid a trip all the way to the directory. Indeed, we observe
that lu and rad have the two lowest average active data
copies per virtual tree (both 1.07) while the two benchmarks
with the greatest read latency reduction, bar and wsp, have
amongst the most average average data copies per virtual
tree (1.16 and 1.33).

Write accesses, on the other hand, since they do not incur
the penalty of accessing main memory, are less sensitive to
the size of the trees than to the frequency with which they
are torn down. This frequency is heavily dependent on the
distribution of the home nodes of the accesses. That is, how
many accesses’ addresses map to node 0, how many to node
1, etc. If a particular node or nodes must handle a dispro-
portionate number of write accesses, the write requests are
more likely to queue up at the home node. Since an inval-
idation takes longer for the directory protocol, this penalty
is paid for the current write request as well as all others that
are queued at the home node, increasing the disparity in the
average write access time. We measure the deviation from
a perfect distribution for each of the benchmarks by calcu-
lating the root-mean-squared difference between the distri-
bution of a given benchmark and a perfect distribution (all
nodes handle 100%/16 = 6.25% of the accesses). Indeed
we see that wsp, which saw the largest reduction in write
latency, has the greatest deviation amongst the accesses, and
fft and lu, which experienced the least reduction, had the
least deviation from a perfectly even distribution.

3.2. Design exploration of virtual tree cache

Next, we explore the microarchitectural design of the vir-
tual tree cache for the proposed in-network coherence pro-



Table 3. Access time and area overhead for tree caches of differ-
ent sizes and associativities at 0.18µm, clocked at 500MHz.

Size (no. entries) 0.5K 1K 2K 4K 8K 16K

DM: Access (cyc.) 2 2 2 2 3 4
2-way: Access (cyc.) 2 2 2 2 3 4
4-way: Access (cyc.) 2 2 2 2 3 4
8-way: Access (cyc.) 2 2 2 3 3 4

16-way: Access (cyc.) 2 2 2 3 3 3

DM: Area (µm2) .059 .13 .22 .56 .87 1.73
2-way: Area (µm2) .058 .12 .29 .51 .89 1.14
4-way: Area (µm2) .062 .10 .22 .51 .88 1.17
8-way: Area (µm2) .082 .11 .17 .40 .68 1.17

16-way: Area (µm2) .13 .15 .20 .57 .72 1.21

tocol. The design trade-offs of the virtual tree cache are
mainly affected by the following parameters. The size of
the virtual tree cache (number of entries) determines the ca-
pacity of the virtual tree network: more virtual trees trans-
lates to the in-network implementation supporting a greater
amount of coherence sharing and fewer forced evictions due
to capacity misses, thus improving performance. The asso-
ciativity of the virtual tree cache affects the tree cache uti-
lization: by increasing cache associativity, conflict misses
decrease (up to a point, as we will see below), again leading
to fewer unnecessary invalidations and better performance.
Large, highly-associative tree caches, however, have a detri-
mental impact on access time and area. Since the tree cache
access time is on the critical path of the router pipeline (See
Section 3.8) and area is a scarce resource in chip multipro-
cessors, the tree cache organization needs to be judiciously
traded off with the performance impact.

Table 3 shows the impact on access delay and area for
various configurations of the virtual tree cache, derived
from Cacti [13]. As mentioned earlier, the number of read
and write ports are assumed to be the maximum (5) to ob-
viate arbitration delay from the tree cache access time and
minimize the impact on router pipeline.

Figure 6 graphs the effect of varying cache sizes on av-
erage read and write access latencies, with the associativ-
ity kept constant at 4-way, for all SPLASH-2 benchmarks
tested. In order to investigate the behavior of the under-
lying protocol, we disable the victim caching as described
in Section 2.1. As we expect, Figure 6 shows that reduc-
ing the tree cache size results in steadily increasing average
read latency. The reason for this is that with smaller caches,
trees are evicted from the network more frequently and so
there are more read requests injected into the network which
ultimately must obtain the data from main memory, incur-
ring the large 200-cycle penalty. Since writes do not incur a
penalty for off-chip access, the average write latency is not
sensitive to the size of the tree caches, as we see in Figure 6.
From a performance point of view, we would like to choose
as large a tree cache as is practical; we keep this in mind as
we continue our exploration.

Next, to uncover the optimal associativity, we vary vir-
tual tree cache associativity while keeping capacity constant
at 4K entries per node. Figure 7(a) shows that for most
of the benchmarks, the average read latency decreases as
we increase the associativity from 1-way (direct-mapped)
to 2-way and to 4-way, but then increases as associativity
is increased to 8-way. We expect the first trend because as
the associativity decreases, there are more conflict misses,
which result in shorter average tree lives, which in turn
causes a higher percentage of reads to have to obtain data
from main memory instead of hitting an existing tree. How-
ever, it is unusual that the average read latency increases

when the associativity is increased from 4-way to 8-way.
This can be explained by the proactive evictions triggered
by our protocol. For any given existing tree in the net-
work, if the sets are larger, then there is a greater chance
that a request message traveling through the network will
map to that set and possibly proactively evict that existing
tree. This increases the chance that a future read, which
would have hit the tree, will now miss and have to get the
data from main memory. In short, a low associativity leads
to more conflict misses, while a high associativity leads to
more proactive eviction misses. In Figure 7(b) we see that
the average write latencies of each benchmark follow the
same trends as the average read latencies of the same bench-
mark.

The above experiments prompt us to select a virtual tree
cache with 4K entries which is 4-way set associative. As
seen from Table 3, such a cache can be accessed within 2
cycles, lengthening the router pipeline by just one cycle,
and it has an area overhead of 0.51 µm2. Compared to a
16-processor chip fabricated in the same 0.18µm process,
the MIT Raw chip [14], whose size is 18.2mm by 18.2mm,
with 2mm by 2mm tiles, the area overhead of the virtual
tree cache is negligible.

3.3. Effect of L2 cache size

Given that we cache victimized data at the home node’s
L2 data cache, we expect that if the size of the L2 cache is
small, relative to the tree cache size, then we will observe
decreasing performance gains as compared to the baseline
directory protocol. Indeed, in Figure 8(a) we observe this
trend. In fact, with a 128KB local data cache per node, our
protocol performs worse than the baseline protocol for rad
and ray. For these and other benchmarks which experi-
enced greater than average decreased performance, it is due
to the larger memory footprints of the applications. This is
as expected because there will be less room for victimized
data. Although we do see this performance loss when us-
ing a 128KB L2 cache, note that with 32-Byte lines, this is
only 4K entries, or the same number as the tree caches. It is
not likely that data caches will be this small in actual CMPs.
Finally, as we see from Figure 8(b), the average memory ac-
cess latency for writes is not sensitive to the size of the L2
caches for the same reason as before: write accesses never
experience off-chip memory access penalties and must gen-
erate a new tree every time.

3.4. Performance scalability

Here, we evaluate the performance scalability of in-
network cache coherence by scaling to a chip multiproces-
sor with 64 processors. We first run each benchmark, par-
allelized 64-way. Figure 9 shows the relative savings in av-
erage memory access latency for the in-network implemen-
tation vs. the baseline directory-based protocol for each in-
dividual benchmark across the 64 processors. We see that
we are able to gain 35% savings in average read access la-
tency and 48% savings in average write latency relative to
the baseline. This shows that the percentage performance
improvement continues to be maintained as network size
scales up, attesting to the performance scalability of the in-
transit optimizations of in-network coherence.

Most of the results in Figure 9 are comparable to those
in Figure 5, with a few notable exceptions. In some cases,
our protocol performs much better than in the 16-node case.
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This is because the effects of contention and distance are
amplified in a 64-node network; for reads, more frequent
accesses lead to more conflict misses and thus more trips
to main memory. For writes, more frequent accesses lead
to more write requests having to queue at the home node
as before, but now that the average distance between home
node and sharers is larger, the cumulative queueing effect as
described in Section 3.1 is much larger. Thus, it is not sur-
prising that the two benchmarks that experienced write la-
tency savings significantly greater for 64 nodes than for 16
nodes, lu and ocn, injected averages of .27 and .46 write
requests per cycle (rpc) respectively, and that the rest of the
benchmarks injected at most .16 write rpc. Similarly, rad,
which observed 71.4% read latency savings, injected an av-
erage of 1.47 read rpc, whereas the next highest injection
rate was .61 rpc.

3.5. Effect of deadlock recovery

In Section 2.1 we described the method of deadlock de-
tection and recovery in our protocol. Here we quantita-
tively demonstrate the minimal impact that deadlock has
on performace. Table 4 lists the percentages of the overall
read and write latencies which are attributed to time spent
detecting and recovering from deadlock (this includes the
timeout intervals and the random backoff intervals). While
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Figure 9. Average memory latency reduction for the tree protocol
compared to the baseline MSI directory protocol in a 64-node mesh
network.

the penalty for an individual request that deadlocks can be
severe (on the order of the cost to access main memory),
deadlocks occur so infrequently that it amounts to a small
percentage of the overall latency. Indeed, for the nominal
tree cache configuration, the only benchmarks which expe-
rienced any deadlock were ray and ocn. Therefore, the
data in Table 4 were generated using direct-mapped 4K-
entry tree caches, and we see that in this case, on average,
deadlock accounts for just 0.20% of the overall memory ac-
cess latency.



Table 4. Percentages of read and write latencies which are the
result of deadlock.

Bench fft lu bar rad wns wsp ocn ray avg.

Rd. Lat(%) .14 .05 .13 .43 .05 .74 .12 .04 .21
Wr. Lat(%) .15 .14 .19 .03 .06 .61 .08 .05 .20

3.6. Storage scalability

There are two key differences in our in-network imple-
mentation of the MSI protocol that affect the storage over-
head and scalability. First, in our in-network implementa-
tion, the home node no longer stores a list of sharers, but
only points in the direction of the root node. Now, though,
each intermediate node needs storage for the virtual tree
cache bits. Note however that the in-network implemen-
tation enables the storage of directions to sharers rather
than actual sharer addresses, with each node only know-
ing about itself and its immediate neighbors. As a result,
the virtual tree cache line size grows with the dimension
of the system (the number of immediate neighbors), rather
than the total number of nodes. Comparing our protocol
to other common approaches, full-map and limited directo-
ries [15] require O(N) and O(logN) bits per entry. Coarse-
vector schemes require O(N/K) bits, where K is the num-
ber of processors per group. Linked-list (such as SCI [16])
or tree-based protocols require O(S*logN) bits, where S
is the number of sharers. In contrast, our protocol uses
O(Hop(S)*logP) bits, where Hop(S) is the hop count be-
tween the furthest sharers, and P is the number of ports per
router. Note that this does not depend on N.

Next, we quantify the storage overhead of our protocol as
we scale the number of processors. To calculate the storage
overhead of our protocol, we compare the virtual tree cache
size with that of the full-map directories in the directory-
based protocol. For a 16-node system, our in-network im-
plementation uses 4K*28bits per node while the directory-
based protocol uses 4K*18bits2 per node, resulting in 56%
more storage overhead for the in-network implementation;
for a 64-node 8-by-8 system, the in-network implementa-
tion still uses 4K*28bits per node, but the directory protocol
now uses 4K*66bits per node, so the in-network implemen-
tation now uses 58% fewer storage bits.

3.7. Effectiveness of in-network implementation

Throughout this paper, we advocate the effectiveness of
breaking the abstraction of the network as solely a com-
munication medium, and embedding coherence protocols
and directories within the network routers. Here, we eval-
uate the effectiveness of such an in-network implementa-
tion versus an implementation where the virtual tree cache
is housed above the network, at the network interface of the
cache controller. This approximates the implementation of
GLOW [17] (see Section 4), where packets are snooped at
the network interface and reinjected and redirected for in-
transit optimizations of reads.3 To model this, we modified
the simulator so each packet accessing the virtual tree cache
has to first be ejected and then re-injected. Figure 10 shows
how this additional delay incurred at each router hop signif-
icantly affects overall memory access latency by an average
of 31% for reads and 49.1% for writes. Note that the perfor-

2The busy and request bits are common to both.
3Note though that GLOW lowered its latency impact by snooping only

when packets switch dimensions (e.g. from the X to the Y dimension)
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Figure 10. Effect of integrating the routing protocol within the
network as opposed to within the network interface in the local node.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

fft lu bar rad wns wsp ocn ray avg

A
vg

. L
at

en
cy

 R
ed

uc
tio

n 6vs.5 cycles
5vs.4 cycles

4vs.3 cycles
3vs.2 cycles

2vs.1 cycles

Figure 11. Average memory access reduction as a function of
router pipeline depth.

mance impact is relatively constant across all benchmarks.
This makes sense because the only difference between the
two experiments for each benchmark is the effective access
time of the tree cache.

3.8. Potential of network-level optimizations

Figure 11 shows the overall memory access latency re-
duction when the router pipeline of the baseline MSI pro-
tocol is varied from 1 to 5 cycles. For each point of com-
parison, we assume that our protocol has an extra cycle of
latency (so the comparison to the 1-cycle directory proto-
col pipeline is a 2-cycle pipeline for our protocol). We
see that as the pipeline is shortened, the overall perfor-
mance improvement lessens; but this is to be expected since
as each pipeline is reduced by one cycle, the ratio of the
two pipeline lengths increases (e.g. 2/1 > 6/5). It should
be noted that while techniques such as speculative alloca-
tors [18] can shorten pipelines, they only work at very low
network loads, lengthening the router pipeline instead at
moderate to high loads when speculation frequently fails.

4. Related Work

There has been extensive prior research in the area of
cache coherence. Here, we attempt to classify the most rel-
evant prior research into three groups: those that jointly
explore the design of cache coherence protocols and the
network fabric; those that optimize the communication net-
work for cache coherence; and those that propose new pro-
tocol optimizations that are oblivious to the underlying net-
work fabric.

Joint protocol-network optimizations. Several prior
works have also jointly optimized the cache coherence pro-
tocol and the network. Barroso and Dubois [34] adapted the
snooping protocol that was thought to be only applicable to
buses so it works on ring networks as well. Cheng et al. [35]
leveraged the heterogeneous interconnects available in the
upper metal layers of a chip multiprocessor, mapping dif-
ferent coherence protocol messages onto wires of different



widths and thicknesses, trading off their latency-bandwidth
requirements.

The first work to implement cache coherence in the net-
work layer was that by Mizrahi et al. [36]. In their work, the
entire data cache is migrated into the network routers. In the
domain of on-chip networks, it is not feasible to cache ac-
tual data within the network fabric as the access time will
critically affect the router pipeline. Our proposal decou-
ples the coherence protocol from data storage. Furthermore,
since the protocol assumed was one in which only one copy
of any given data exists in the network at any time, it is triv-
ially coherent by definition. On the other hand, we require
explicit tracking of sharers, and propose in-network direc-
tories (virtual trees) for this purpose.

Like our proposed in-network implementation, the Wis-
consin Multicube [37] enables in-transit “snarfing” of cache
lines, made possible by its grid-of-buses topology where
each cache monitors two broadcast buses – a row bus and
a column bus. However, while the use of buses enabled in-
transit snooping and snarfing, it also results in the need for
invalidates to be fully broadcasted. Besides, buses are used
solely for communications, with directory tables keeping
track of modified lines kept in the caches, above the net-
work. By moving directories into the network, we show
that a point-to-point network can efficiently facilitate the in-
transit snooping capabilities of a broadcast medium.

The closest work to our proposed in-network cache co-
herence protocol is GLOW by Kaxiras and Goodman [17].
They propose similarly mapping trees connecting sharers to
the underlying network topology, so a sharer who is closer
by than the directory can be reached to reduce latency.
However, they stop short of embedding the directories fully
into the network, instead implementing the protocol at net-
work interface cards. The underlying network thus remains
purely for communications. They also retain the original
bit-vector directories at the home nodes. By implementing
the directories as virtual trees within network routers, we
can realize very-low-latency steering of the coherence traf-
fic. As Section 3 shows, an in-network implementation of
directory-based MSI results in an average 40% delay sav-
ings over an above-network implementation.

Network optimizations for cache coherence. Prior
work has demonstrated the impact of the interconnection
network on overall shared-memory system performance and
proposed network designs that can better the performance
of cache coherence protocols. Stets et al. [19] demon-
strated that network features, such as network ordering,
multicasting, can greatly simplify coherence protocol im-
plementation and improve system performance. Dai and
Panda [20] presented block correlated FIFO channels to
tackle the memory ordering issue of network interface de-
sign. They also proposed a multi-destination message-
passing approach to lower the cache invalidation over-
head [21]. Bilir et al. [22] designed multicast snooping
to minimize communication traffic. The cruise-missile-
invalidates of the Piranha machine [23] applies multicasting
to invalidates so a few invalidation messages can be used to
invalidate a large number of nodes. While these works tai-
lor the network for better performance of cache coherence
protocols, the network is only responsible for delivering a
message to the specified destination. By embedding direc-
tories within the network in the form of virtual trees, we
enable in-transit rerouting of messages towards sharers of
the cache line, away from the originally specified destina-
tion (the home node).

Protocol optimizations. It has been shown that it
is expensive to enforce sequential consistency [24], as

it requires ensuring a strict ordering between read/write
accesses that mandates multiple round-trips of request-
invalidate-acknowledgment-reply communications. As a
result, extensive prior research has focused on optimizing
the delay of sequentially consistent systems, through new
protocol states, with protocols supporting relaxed consis-
tency the most prevalent [24]. DASH [25] combines both a
snooping bus-based protocol with a directory-based proto-
col through a two-level interconnect hierarchy. DASH sup-
ports efficient execution of read-modify-write accesses be-
cause a clean exclusive cache line can be replaced without
notifying the directory. Later on, this protocol was adapted
in SGI Origin systems [26]. Shen et al. [27] proposed CA-
CHET, an adaptive cache coherence protocol. To mini-
mize write latency, CACHET allows stores to be performed
without the exclusive ownership, which enables concurrent
writes accessing the same address. Huh et al. proposed
speculative incoherent cache protocols [28]. Coherence de-
coupling breaks communication into speculative data ac-
quisition and coherence validation with rollback upon mis-
speculation. While relaxing the consistency model lowers
communication overhead, it also complicates the program-
ming model. Our proposed in-network implementation of
the MSI protocol reduces communication overhead while
ensuring sequential consistency.

Furthermore, end-to-end protocol optimizations are or-
thogonal to in-transit optimizations. For instance, our in-
network virtual trees can be used to percolate tokens of the
TokenB coherence protocol [29] efficiently within the net-
work, between sharer nodes. They also provide a natural
way of replicating cache lines from the root node towards
requestors dynamically depending on available cache ca-
pacity, reducing average access latency, demonstrating how
end-to-end replication protocols [11] can be moved into the
network for better efficiency. In short, while we demon-
strate in this paper just the efficiency of an in-network im-
plementation for the widely used directory-based MSI pro-
tocol, we believe the implementation of many protocols
within the network will reap latency benefits as it allows
protocols to very efficiently leverage the physical locality
exposed by the network.

Substantial prior work tackled the storage scalability is-
sues of full-map directory-based protocols. Variants of lim-
ited directories [15] were proposed, from storing pointers
to a subset of sharers, to coarse vectors, compressed and
multi-level directories [30, 31]. In these techniques, in gen-
eral, a subset of pointers to sharers are kept at the directory
node, and pointer overflows are handled by limited broad-
casts, second-level directories or by software. Alternatively,
coherence protocols were proposed where directories are
maintained as linked lists (such as SCI [16]) or trees (such
as [32, 33]). Unlike limited directory schemes, these proto-
cols track all sharers and thus do not trade off fidelity. How-
ever, pointers take up O(logN) storage, where N is the num-
ber of nodes in the network, and a parent-child relationship
in the list or tree does not necessarily map to a neighbor-
ing tile relationship in the physical network. Therefore, the
number of actual hops required for a message to traverse the
list/tree from the root to any of the leaves is bounded from
above by DlogN, where D is the diameter of the network.
Like full-map directory protocols, our in-network cache co-
herence keeps track of all sharers. Similarly to list/tree pro-
tocols, we achieve this through pointers, though again by
moving them into the network. By embedding these di-
rectory pointers at each router, pointers take up O(logP)
storage, where P is the number of ports or degree of the
network, and physical network locality can be leveraged ef-



ficiently since the pointers can be accessed directly within
each router, without leaving the network fabric.

5. Conclusions

In this paper, we propose the embedding of cache coher-
ence protocols within the network, separately from the data
they manage, so as to leverage the inherent performance
and storage scalability of on-chip networks. While there
has been abundant prior work on network optimizations for
cache coherence protocols, to date, most prior protocols
have maintained a strict abstraction of the network as a com-
munication fabric. Here we detailed how the directories of
classic directory-based protocols can be moved into the net-
work, maintained in the form of virtual trees that steer read
and write requests in-transit, towards nearby copies. Our
evaluations on a range of SPLASH-2 benchmarks demon-
strate up to 44.5% savings in average memory latency on a
16-processor system. Furthermore, the performance scala-
bility is demonstrated by an average memory access savings
of up to 56% savings on a 64-processor system. Ultimately,
we envision the embedding of more distributed coordina-
tion functions within the on-chip network, leveraging the
network’s inherent scalability to realize high-performance
highly-concurrent chips of the future.
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