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• Introduction to Ray Tracing

– What is Ray Tracing?

– Comparison with Rasterization

– Why Now? / Timeline

– Reasons and Examples for Using Ray Tracing

– Open Issues
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Rasterization:
Projection geometry forward

Ray Tracing:
Project image samples backwards

Computer graphics has only two basic algorithms for rendering 3D scenes to a 
2D screen. The dominant algorithms for interactive computer graphics today is 
the rasterization algorithm implemented in all graphic chips. It conceptually takes 
a single triangle at a time, projects it to the screen and paints all covered pixels 
(subject to the Z-buffer and other test and more or less complex shading 
computations). 

Because the HW has no knowledge about the scene it must process every 
triangle leading to a linear complexity with respect to scene size: Twice the 
number of triangles leads to twice the rendering time. While here are options to 
optimize this, must be done in the application separate from the HW.

The other algorithm – ray tracing – works in fundamentally different ways. It starts 
by shooting rays for each pixel into the scenes and uses advanced spatial 
indexes (aka. acceleration structures) to quickly locate the geometric primitive 
that is being hit. Because these indexes are hierarchical they allow for a 
logarithmic complexity: Above something like 1 million triangles the rendering 
time hardly changes any more.
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Rasterization
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Rasterization

• Rasterization-Pipeline

– Highly successful technology

– From graphics supercomputers to 
an add-on in a PC chip-set

• Advantages

– Simple and proven algorithm

– Getting faster quickly

– Trend towards full programmability

Application

Vertex Shader

Rasterization

Fragment Shader

Fragment Tests

Framebuffer

Computer graphics knows two different technologies for generating a 2D image 
from 3D scene description: rasterization and ray tracing.

Virtually all interactive graphics today uses the rasterization technique. Because it 
was easier to implement in hardware during early days of interactive computer 
graphics (early 1980s), it took over the world. Mainly driven by companies such 
as SGI, Nvidia, ATI, and some others rasterization hardware developed rapidly to 
the point that this graphics technology is already embedded in many motherboard 
chip sets. And the technology is still developing at an astonishing pace. In 
particular, significant programmability is being added to the rasterization pipeline 
in every new generation.
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Current Technology:
Rasterization
Current Technology:
Rasterization

• Primitive operation of all interactive graphics !!

– Scan converts a single triangle at a time

• Sequentially processes every triangle individually

– Cannot access more than one triangle at a time

� But most effects need access to the entire scene: 
Shadows, reflection, global illumination

The basic operation of rasterization is to sequentially project each triangle sent by 
the application and projecting it to the 2D screen. Then the pixel covered by the 
triangle are computed and each one is colored according to some programmable 
shader functions.

It is important to note that the rasterization pipeline derives its basic efficiency 
from the fact that it conceptually looks only at a single triangle at a time in the 
order they ar submitted by the application. At no point does the graphics chip 
have the ability to look at the rest of the scene.

Yet, this ability is key to some of the most basic and simple optical effects that 
are required for faithfully rendering 3D scenes. Computing the shadows cast on a 
triangle requires knowing about the triangles casting the shadow, computing the 
reflection requires the ability to find the triangles being reflected, and computing 
indirect illumination on a triangle requires access to the entire scene.

With rasterization such functionality cannot be computed accurately and 
approximations and fakes must be used (e.g. shadow maps, reflection maps). 
However, they necessarily have inaccuracies and artifacts and are generally less 
efficient.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

Ray tracing can be formulated very much like the pipeline known from 
rasterization (an with similar efficiency). A significant change, however, is the 
feedback loops in the pipeline, which are the key to its ability to compute global 
information in the scene.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

The first stage in the pipeline computes a rays from the camera’s parameter and 
a 2D sample location on the screen.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

The traversal stage takes the ray and traverses the spatial index to locate the first 
hit point of the ray with a geometric object.
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What is Ray Tracing?
Traversal
What is Ray Tracing?
Traversal

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Here we visualize the spatial index as a (2D-) grid. Obviously the index is a 3D 
structure. However, 3D-grids are not often used (except in some HW projects) as 
they waste much memory and cannot adapt to local changes, such as a highly 
dense region with many close-by triangles. The grid only symbolizes the spatial 
index here.

Objects and primitives are spatially sorted and pointers to them are inserted into 
all 3D grid cells, that they overlap. This is done in a preprocessing step. During 
runtime, we can quickly traverse all cells hat are pierced by a ray and only 
compute intersections with primitives that are in these cells and are thus close to 
the rays and like to get intersected.
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What is Ray Tracing?
Traversal
What is Ray Tracing?
Traversal

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Traversal is done is a simple algorithm that will be explained in another part of 
the course.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

When possible objects are located the intersection stage computed the exact 
intersection of the ray with the geometric primitive (e.g. triangle). It not hit point is 
found with any of the objects in the cell, we go back to the traversal stage and 
continue traversal.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

Once a hit point has been found it is forwarded to the shading stage, which job it 
is to compute the color of the returned light, which can then be used to color the 
corresponding pixel. In order to know how much light is reflected from the 
intersected location towards the camera, we must first know how much light 
arrives at this location.

We can do this by shooting some more rays.
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Framebuffer

What is Ray Tracing?What is Ray Tracing?

For example, we can send a “shadow ray” to all light sources in order to find out if 
there is a free path between the point and the light. This is the case if there is no 
intersection with any object from ray segment between the hit point and the light 
source. This elegantly, accurately, and efficiently solves the shadow computation 
problem in graphics once and for all.

The shadow ray is fed into the pipeline just as a normal ray but some 
optimizations can be done because we do not need to find the first intersection 
because any intersection would be fine.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

The show rays are then traversed and intersected as normal, but no shading 
computations need to be done for them.
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

When the original shader get the information from the shadow ray it can adapt its 
shading results accordingly. Note that this operation requires full recursion in the 
shader, as we must wait until the results of tracing the shadow ray returns.
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What is Ray Tracing?What is Ray Tracing?

Similarly the shader may trace additional rays for querying the incoming 
illumination from other directions. For refraction or reflection, new rays are send 
to find out how much light arrived from that particular directions. This is a full 
recursive ray tracing procedure as the new hit point may in turns start new rays 
(which a shadow ray would not do).
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

A fraction of the light from these additional rays is then added to the pixels color 
based on the reflection propertied of the primary hit point …
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Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

What is Ray Tracing?What is Ray Tracing?

… and finally the results of the rays tracing process is a single color that can be 
directly written to the frame buffer.

No z-buffer, accumulation buffer, stencil buffer, alpha buffer are needed as these 
computations are performed by the surface and other shaders or are not even 
needed with ray tracing at all.

This property of ray tracing to only write the final result to memory is one of its 
major strengths and leads to significantly reduced memory bandwidth.
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What is Ray Tracing?What is Ray Tracing?

- Global effects

- Parallel (as nature)

- Fully automatic

- Demand driven

- Per pixel operations

- Highly efficient

� Fundamental Technology for Next Generation Graphics

This slide summarized the most important reasons for using ray tracing:

-IT supports computing global effects because global information can be 
queried from a scene by tracing rays into its environment.

- Each primary ray is completely independent from all other primary rays, 
which would ultimate make it possible to assign one processor per primary 
ray. Ray tracing has also been called “embarrassingly parallel”.

- Ray tracing can deal with “declarative scene descriptions” that specify 
how a scene should look like, without specifying how this effect should be 
achieved. This includes full orthogonal descriptions of the geometry, its 
appearance (surface shaders), the camera, as well as the lighting 
environment and any light sources. This scene description can then be 
rendered fully automatically without the help of the creating application.

- Ray tracing is demand driven, meaning it only ever accesses something 
if that something is hit by a ray. This means that there might be gigabytes 
of stuff hidden behind a wall, yet a ray tracer might not even load it into 
memory.

- All operations are performed per pixel, including occlusion culling, 
interpolations, illumination etc. This leads to a high image quality.

- In summary of the above points ray tracing is highly efficient and in many 
cases more efficient than rasterization. For instance, it does not need to 
build a complete reflection map but simply computes the reflection where 
relevant.
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Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Definition: Rasterization

Given a set of rays and a primitive, efficiently  
compute the subset of rays hitting the primitive

Uses 2D grid as an index structure for efficiency

• Definition: Ray Tracing

Given a ray and set of primitives, efficiently 
compute the subset of primitives hit by the ray

Uses a (hierarchical) 3D spatial index for efficiency

The two definitions show that the two algorithms are quite related but start at 
different end of the spectrum. Rasterization only uses a 2D grid as an index 
structure in image space. This limits the set of rays to those, that start at a single 
point and go through a regular set of sample points on a plane. This is a severe 
limitation already. No 3D index structure in object space is supported, even 
though this can be added by the application. This, however, means that it cannot 
be supported in hardware and there is always a communication overhead.

In contrast ray tracing is flexible in the number and the set of traced rays but 
needs a hierarchical spatial index for efficient computations. Ray tracing does not 
need to look at all scene objects but only deals with those that are visible. It uses 
an efficient 3D spatial index structure to quickly find any primitive that may be hit 
by a ray. A hierarchical index structure leads to logarithmic scalability in terms of 
scene size, which is a significant advantage over rasterization. These spatial 
index structure can also be reused for other purposes such as collision detection 
and many others. However, this index structure must be built to great detail, 
which poses challenges for dynamic and interactive scenes.

Because of the spatial 3D index, ray tracing can efficiently answer queries for 
individual or small groups of rays, which is handy for tracing just the necessary 
rays for a small reflective object or such.



21

Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• 3D object space index (e.g. kd-tree)

– Limits scene dynamics (may require index rebuilt)

– Increases scalability with scene size � O(log n)

– Efficiently supports small & arbitrary sets of rays

• Few rays reflecting off of surface � ray tracing problem

• 2D image space grid

– Rays limited to regular sampling & planar perspective

See previous slide.
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Comparison
Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Convergence: 2D grid plus object space index

– Brings rasterization closer to ray tracing

• Performs front to back traversal with groups of rays

• At leafs parallel intersection computation using rasterization

– Introduces same limitations (e.g. scene dynamics)

• But coarser index may be OK (traversal vs. intersection cost)

– Computation split into HW and application SW

�More complex, latency, communication bandwidth, …

Object space 3D spatial indices can be used with rasterization. It brings 
rasterization close to being ray tracing as it then performs a front to back 
traversal operation (for larger packets of rays) and uses the rasterization engine 
for doing the ray triangle intersection test.

However, this approach imposes the same limitations on rasterization such as 
the complexity to support dynamic scenes. It also splits the computations 
between the HW and the application software, which adds overhead and 
complications. 
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Rasterization vs. Ray Tracing
Comparison
Rasterization vs. Ray Tracing

• Per Pixel Efficiency
– Surface shaders principally have same complexity

– Rasterization:

• Incremental computation between pixels (triangle setup)

• Overhead due to overdraw (Z-buffer)

– Ray tracing:

• No incremental computation (less important with complexity)

• Caching works well even for finely tessellated surfaces

• May shoot arbitrary rays to query about global environment

Shaders in GPUs and RPUs are fundamentally similar and have the same 
complexity for their basic operations. The main difference is that ray tracing can 
just shoot rays to query about global information in a scene (reflection, indirect 
lighting, …), where rasterization must fall back to inefficient multi-pass methods.

Rasterization has the option of doing incremental operations between pixels of 
the same triangle, but looses is the scene is too finely tesselated where this 
advantage can turn into a disadvantage. Ray tracing must re-compute all 
properties of the hit geometry for every ray but can take advantage of caching 
and SIMD computations to optimize for this case (see HW section).
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Comparison
Rasterization vs. Ray Tracing

• Benefits of On-Demand Computation

– Only required computations � efficiency

• E.g.: must not compute entire reflection map

– No re-sampling of pre-computed data � accuracy

– Exact computation � reliability

– Fully performed in renderer (not app.) � simplicity

– Data loaded only if needed � resources

The on-demand computation offers many benefits:

-It only computes information that is known to contribute to the image, which 
leads to increased efficiency. It also offers tighter control over the computer work 
load.

- Because data is computed on-the-fly when it is needed, ray tracing rarely stores 
temporary results in memory. An example are shadow: It traces the rays as 
needed instead of storing a discretely sampled representation all possible rays, 
which must be re-sampled when queried. This re-sampling can significantly 
reduce the accuracy and lead to artifacts.

- Because the computations are performed accurately and physically correct for 
exactly the necessary rays, the results have less artifacts and are much more 
reliable.

- because ray tracing supports a full declarative scene description, the entire 
rendering computation can be implemented in hardware or at least with in a 
separate rendering engine. The application is only needed to update the scene 
between frames.

- Due to the on-demand approach necessary data is only loaded when needed, 
which can greatly reduce the working set and thus the resources needed for a 
given computation. 
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Comparison
Rasterization vs. Ray Tracing

• Hardware Support
– Rasterization has mature & quickly evolving HW

• High-performance, highly parallel, stream computing engine 

– Ray tracing mostly implemented in SW

• Requires flexible control flow, recursion & stacks, flexible i/o, …

• Requires virtual memory and demand loading due scene size

• Requires loops in the HW pipeline (e.g. generating new rays)

• Depend heavily on caching and suitable working sets

� Not well supported by current HW

Ray tracing is still lacking significantly with respect to hardware support. While 
rasterization has seen more than twenty years of intense development, hardware 
for ray tracing is only just appearing. Nonetheless, it has been shown that ray 
tracing can be implemented highly efficiently in hardware (see RPU section).

However, ray tracing requires significantly more flexibility from a hardware 
architecture, which necessitates extensions and new approaches compared to 
today’s graphics architectures.
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Requirements for 
Realtime Ray Tracing

• Requirements
– High floating point performance

• Traversal & intersection computations

– Flexible control flow, multiple threads

• Recursion, efficient traversal of kd-tree, …

– Exploitation of coherence

• Caching, packets, efficient traversal, …

– High bandwidth

• Between traversal, intersection, and shading; to caches

Ray tracing can only be implemented efficiently with floating point computations. 
Traversal, intersection, and shading all require many FLOPS per ray. Because of 
the traversal of hierarchical tree structures and the more-or-less general purpose 
nature of shading computations, a flexible hardware support is required.

However, ray tracing inherently has a high degree of coherence that can be used 
to reduce the computational and memory bandwidth requirements of a naïve 
implementation.
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Why Now?
Timeline

• Early 1980s:
– FLOPS in HW very expensive (8087 used 1980-89) 

– Very limited HW resources (“3M“)

– Small 3D scenes with large triangles

• Consequences
– Raster-pipeline model for parallelism & throughput

– Mainly rasterization, limited FLOPS

– RT required many FLOPS, bandwidth, no pipeline

An interesting question to ask is: Why has realtime ray tracing not been done 
before?

It turns out that many researchers have repeatedly stated very early that ray 
tracing would eventually become faster than rasterization because of its 
logarithmic complexity in terms of scene size. However, these claims have not 
been fulfilled for more than twenty years, and research on ray tracing essentially 
stopped in the late 1980s / early 1990s. There had been no research that has 
explored WHY ray tracing has been so dramatically slower than rasterization 
despite other expectations.

Even though, there are several reasons why realtime performance could not be 
realized in the early days. FLOPS have been very expensive in these days, 
scenes usually had few large polygons, and hardware resources were very 
scarce. Due to its purely local computational model, rasterization is much better 
suited for such an environment.

Since then a complete generation of researchers, developers, and users grew up 
exclusive in a rasterization based world. Now everyone just “knew” that ray 
tracing is slow and cannot be implemented in hardware.
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Timeline
Why Now?
Timeline

• Mid 1990s:

– Nvidia & ATI create integrated 3D graphics chips

– Mainly rasterization, limited FLOPS

• Ray Tracing

– SW research had mostly stopped, lack of progress

– HW research limited by HW resources

• Mostly focusing on intersection computation only

In the mid 1990s VLSI graphics chips mainly accelerated the rasterization part of 
OpenGL, which mainly consists of fixed point arithmetic. FLOPS were still 
expensive to realize in hardware. Thus the rasterization took off in the mass 
market while ray tracing still could not be realized on a competitive basis.



29

Why Now?
Timeline
Why Now?
Timeline

• 1998-2000:

– GPUs: Geometry engine, many fixed function FLOPS

– Parallel RTRT on supercomputers & PC clusters

• 2001-2002

– Programmable GPUs

– RT on GPUs: Unsuitable programming model

– Simulation show: HW for RTRT is possible

At the end of the late 1990s the hardware resources became available to perform 
realtime ray tracing on large supercomputers and a few years later also on 
clusters of PCs. FLOPS became cheap and were available in every PC through 
SIMD, high clock rates, long CPU pipelines, etc. However, the new architecture 
was not well suited for the inner loops of traditional ray tracing algorithms. Only 
when the algorithms were re-implemented could these new hardware features be 
exploited effectively.

A few years later large numbers of FLOPS also became available in 
programmable GPUs. However, until now their programming model is to inflexible 
to effectively exploit the raw performance for ray tracing.
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Timeline
Why Now?
Timeline

• ~2004:

– Fully programmable, high-performance GPUs

– Limited control flow, no recursion, no stack

– First fixed-function RTRT-HW (FPGA)

• Now:

– Fully programmable, scalable RPU (FPGA)

The features and flexibility of GPUs has increased significantly since then. But it 
is still insufficient to implement fast ray tracing on GPUs except in toy examples. 
It will be interesting to see where GPUs will be moving in the next few years. The 
dominant stream programming model seems not well suited for ray tracing type 
algorithms.

However, in the mean time custom hardware has been developed that performs 
the entire computation highly efficiently in hardware. In 2004 a first fixed-function 
ray tracing chip was presented. A year later the first fully programmable RPU (ray 
processing unit) was presented at Siggraph. Interesting enough the latter 
architecture is based to large degrees on GPUs but extends then in key locations 
by dedicated hardware units as well as significantly increased programming 
flexibility.
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Why Now?Why Now?

• Summary

– Success of rasterization and lack of progress 
eliminated RT research in 1990s

• Little low level optimization, assumption there is no coherence

– CPUs got faster but RT did not take advantage of it

• SSE, stalls due to long pipelines, coherence, …

– Better algorithms later allowed to catch up with HW

– RT in HW: resources only became available recently

In summary, it becomes clear that ray tracing has a much higher fixed cost in 
terms of cost of hardware. This has held back ray tracing for long enough to 
discourage most researchers that by the time the resources became available, 
nobody was interested any more. However, at this point progress could be made 
in great leaps because of catching up with the then current hardware and 
software possibilities.
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• What are the reasons for industry to choose
Realtime Ray Tracing?
– Highly realistic images by default

– Physical correctness and dependability

– Support for massive scenes

– Integration of many different primitive types

– Declarative scene description

– Realtime global illumination

We are providing realtime ray tracing technology to industry through our spin-off 
company inTrace GmbH. We have seen a significant interest from industry 
already three years ago. inTrace customers are now all major German car 
manufactures (Volkswagen, DaimlerChrysler, BMW, Audi) and Airbus with 
additional projects run at Skoda,  Boeing, and other companies.

From this contacts we see the following main reasons for industry to be 
interested in this new technology. However, the reasons are weighted very 
differently by different departments even of the same company.

-The better image quality due to accurate shadows, reflections, and refraction 
even on highly complex models is a major motivation for most departments. 

- Often more important is the fact that the viewer can be confident that what he 
sees on the screen has been computed physically correct and that he can 
depend of these results. Given that at design reviews major investments are 
made based on the visual appearance of a virtual model, this dependability if of 
paramount importance.

- Large CAD models usually had to be simplified significantly for achieving 
realtime performance even with the best rasterization technology. Due to the 
logarithmic scaling, companies can now work interactively with full detail models 
like entire cars or airplanes down to details like individual screws. This greatly 
simplifies their process pipeline.

- Ray tracing is also able to render spline surfaces and points directly, which has 
caused significant interest. Similarly, global illumination is interesting for providing 
the still missing level of realism.

- Finally, the ability to easily and fully automatically describe an entire highly 
complex scene with shaders from a predefined library, such that the visualization 
works on the press of a button is highly interesting to industry
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Reasons for Using RTRT
Highly Realistic Images
Reasons for Using RTRT
Highly Realistic Images

• Highly Realistic Images by Default
– Typical effects are automatically accounted for 

• E.g.: shadows, reflection, refraction, …

• No special code necessary, but tricks can still be used

– All effects are correctly ordered globally 

• Do need for application to do sorting (e.g. for transparency)

– Orthogonality of geometry, shading, lighting, …

• Can be created independently and used without side effects

• Reusability: e.g. shader libraries

See previous slide.
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Reasons for Using RTRT
Highly Realistic Images
Reasons for Using RTRT
Highly Realistic Images

Volkswagen Beetle with correct shadows and (multi-)reflections on curved surfaces

This image shows a simple example of the complex optical effects that need to 
be rendered with a car model, including shadows of curved surfaces, multiple 
reflections, environment maps, and many more.
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Reasons for Using
Ray Tracing
Reasons for Using
Ray Tracing

• Physical Correctness and Dependability

– Numerous approximations caused by rasterization

– Might be good enough for games (but maybe not?)

– Industry needs dependable visual results

• Benefits

– Users develop trust in the visual results 

– Important decisions can be based on virtual models

See before.
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Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

Fully ray traced car head lamp, faithful visualization requires up to 50 rays per pixel

Only ray tracing is able to render a complex image like this. Rays trees of at least 
depth of 10 and up to 25 and more must be traced to obtain faithful results. In 
total this adds up to more than 50 rays per pixel. This images runs in 5-7 fps on a 
small PC cluster.
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Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

Rendered directly from trimmed NURBS surfaces, with smooth environment lighting

In a recent project an entire car was rendered directly with trimmed NURBS 
surfaces instead of many triangles. In addition, we used a highly accurate car 
paint shader and global illumination from a sky dome. For realtime purposes a 
large PC cluster is required.
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Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

BTF Data Courtesy R. Klein, Uni Bonn

Rendered with accurately measured BTF data
that accounts for micro lighting effects

Textured Phong for 
comparison

This image shows the difference between using texture mapping (lower right 
image) and using measured BTF data, which captures the fine detail of 
illumination on surfaces with micro structure like leather.

The data sets have been provided by Prof. Klein, Bonn University and are directly 
rendered on trimmed NURBS surfaces.
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Reasons for Using RTRT:
Physical Correctness
Reasons for Using RTRT:
Physical Correctness

VR scene illuminated from realtime video feed, AR with realtime environment lighting

Ray tracing can also be used in a VR or mixed reality context. Instead of 
compositing multiple 2D images, here the compositing is performed in the surface 
shaders of the models. In addition environment lighting is integrated from the TV 
screen and a 180 degree light probe, which also provides the reflections on the 
car.
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Reasons for Using RTRT:
Massive Models
Reasons for Using RTRT:
Massive Models

• Massive Scenes

– Scales logarithmically with scene size

– Supports billions of triangles

• Benefits

– Can render entire CAD models without simplification

– Greatly simplifies and speeds up many tasks

See before.



41

Reasons for Using RTRT:
Massive Models
Reasons for Using RTRT:
Massive Models

Ray tracing has been the first and (to our knowledge) only technology to 
interactively render the entire Boeing 777 data set. It consists of 350 million 
polygons and takes up to 30 GB of data on disk. Every detail is models including 
tiny screws, cables, pipes, values, and many more. With ray tracing this model 
can be rendered interactively even on a dual-processor PC with 2-3 fps at video 
resolution.

The right image contains 365 000 plants with a total of roughly 1.5 billion 
polygons. All leafs use alpha-mapped textures leading to an extremely high depth 
complexity. Still the scene can be rendered with interactive performance on a 
decent PC cluster. Even smooth lighting from the sky dome can be integrated. An 
good approximation is then shown during interaction but the image converges to 
a high quality solution with a few seconds.
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Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

• Flexible Primitive Types

– Triangles

– Volumes data sets

• Iso-surfaces & direct visualization

• Regular, rectilinear, curvilinear, unstructured, …

– Splines and subdivision surfaces

– Points

See before.
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Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

Triangles, Bezier splines, and subdivision surfaces fully integrated

The image shows a mixture of triangles, splines, and subdivision surfaces 
rendered directly using ray tracing at interactive performance.
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Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

Volume visualization using multiple iso-surfaces in combination with surface rendering

Volume data sets can also be visualized interactively with ray tracing. These 
images show iso-surfaces (combined with surfaces in the lower left). IN recent 
work we also integrated direct volume rendering as well as volume rendering 
semi- and unstructured data sets at interactive performance.
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Reasons for Using RTRT:
Flexible Primitive Types
Reasons for Using RTRT:
Flexible Primitive Types

Realtime ray tracing of point clouds (1 Mpoints each)
On one dual-Opteron 2.4 GHz: 4-9 fps

24 MPoints, 2.1 fps with shadow @ 640x480

These images show large point clouds being interactively ray traced. Even huge 
scenes with 24 million points can be rendered interactively with shadows.



46

Reasons for Using RTRT:
Declarative Graphics
Reasons for Using RTRT:
Declarative Graphics

• Declarative Graphics Interface

– Application specifies scene once, plus updates

– Rendering fully performed by renderer (e.g. in HW)

– Similar to scene graphs, PostScript, or latest GUIs

• Benefits

– Greatly simplifies application programming

– Allows for complete HW acceleration

See before.
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Declarative Graphics

This simple image the orthogonality of geometry, appearance, and lighting that is 
a prerequisite for declarative scene descriptions. The scene contains simple 
surfaces, a volume and a hologram (light field) together with a procedural wood 
shader, a bump mapped mirror, and direct volume rendering effects. Every object 
and appearance has been separately modeled, but the ray tracer combines all 
the combinations of effects fully automatically and always physically-correct (at 
least as long each object is correctly modeled).
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These images are from a prototype computer game running in realtime on the ray 
tracer. It consists of more than 40 million polygons and all optical effects are fully 
simulated at rendering time. All trees are fully models and no LOD is being used.
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• Global Illumination

– Simulating global lighting through tracing rays

– Indirect diffuse and caustic illumination

– Fully recomputed at up to 20 fps

• Benefits

– Add the subtle but highly important clue for realism

– Allows flexible light planning and control

See before.



50

Reasons for Using RTRT:
Global Illumination
Reasons for Using RTRT:
Global Illumination

Conference room (380 000 tris, 104 lights) with full global illumination in realtime

Conference room rendered with global illumination (converged view). Due 
to the shape of the light sources that are long and thin oriented along the 
table, the differences in the shadow boundaries are clearly visible being 
almost sharp in one direction and very smooth in the other. The scene 
also contains many specular materials such as metal frames of chairs and 
metal frames of the boards.
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250k / 3 fps250k / 3 fps 25M / 11 fps25M / 11 fps

Light pattern from a car head lamp computed in realtime using photon mapping:
Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern

This image shows the results of interactive photon mapping for simulating 
the emission properties of this complex car headlight consisting of 
800,000 polygons (top image). The left image shows the quality of 
simulating the illumination of the headlight on a grey wall with 250,000 
photons. We can fully simulate the illumination at 3 fps on a cluster of 25 
PCs. Once the accumulate 30 seconds worth of photons (25 million) and 
then only visualize them, we even reach 11 fps.

The quality of the simulation results is extremely good …
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250k / 3 fps250k / 3 fps 25M / 11 fps25M / 11 fps PhotographPhotograph

Light pattern from a car head lamp computed in realtime using photon mapping:
Left: realtime update, middle: accumulated in 30s, right: photograph of real pattern

As the image on the far right shows. Nearly all features are accurately 
represented. Commercial applications take several hours for this type of 
simulation.
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• Dynamic scenes
– Changes to geometry � updates to spatial index

– Key: Need information from application !!!

• No information � must inspect everything � O(n)

• Approaches
– Separate scenes by temporal characteristic

– Build index lazily, build fuzzy index 

– Adapt built parameters (fast vs. thorough)

Many dynamic scenes work reasonable well already with ray tracing but a lot of 
improvements can still be done. In particular fully dynamic scenes are still 
problematic.

This problem can only be solved efficiently when the application can provide 
enough information about the movement of surfaces. If now information is known, 
any rendering algorithms must resolve to sequentially render every single 
surface. However, with the proper information, significant speed-up can be 
reached. The remaining question is which information can be made available, 
how is it represented best, and how can the renderer make best use of it.
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• Efficient Anti-Aliasing & Glossy Reflection

– Requires many samples for proper integration

• Image plane � Can we do better than super-sampling?

• Shading and texture aliasing � ray differentials (integration?)

• Large/detailed scenes � geometry aliasing, temporal noise

– Super-sampling too costly and LOD undesirable

Anti-aliasing and glossy reflections are just one example of the difficulty to 
integrate over large domains efficiently with a point sampling approach. This is 
still a large open question.
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• Hardware Support
– Goal: realtime ray tracing on every desktop

• >60 fps, 2-3 Mpix, huge models, complex lighting, …

• Possible Solutions
– Faster, multi-core CPUs: might take too long

– Cell: Highly interesting, but no caches

– GPUs: interesting but limited control flow

– Custom HW: RPU (flexible GPU + custom traversal)

There has been a lot of work recently on improved hardware support for realtime 
ray tracing. While PC clusters are a reasonable solution for larger industries, they 
cannot work in the mass market. Here a small-form factor (PC) solution needs to 
be found.

A number of options are available ranging from highly-parallel multi-core designs 
of general purpose CPUs, over the new Cell architecture to GPUs and custom 
ray tracing hardware. Exactly what will be the best solution for what market is still 
an open question.
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