Quiz 1

Advanced Computer Graphics II
Instructor: Peter Shirley and Steven Parker

Date: January 21, 2009

1. (20 points) Suppose \vec{A} and \vec{B} are both non-zero vectors. Let $\vec{A}=\left\{a_{x}, a_{y}, a_{z}\right\}$ and $\vec{B}=\left\{b_{x}, b_{y}, b_{z}\right\}$. Further, let θ be the angle between them $(0 \leq \theta \leq \pi)$. Write an expression for each of the following in terms of $a_{x}, a_{y}, a_{z}, b_{x}$, b_{y}, and b_{z} :
(Note: To simplify the expressions, intermediate variables are allowed.)
a.) $\sin \theta$
b.) $\vec{A} \cdot \vec{B}$
c.) $\cos \theta$
d.) $\vec{A} \times \vec{B}$
2. (10 points) Let $\vec{C}=\vec{A} \times \vec{B}$. In the following diagram, is \vec{C} pointing into or out of the page (assuming a right-hand coordinate system)?

3. (10 points) Write the matrix corresponding to the following system of equations:

$7 x-10 y$	$=-2$
$4 x+2 z$	$=2$
$9 y+2 z$	$=13$

4. (30 points) Let \vec{X} and \vec{Y} be unit vectors, with ϕ the acute angle between them ($0 \leq \phi<\frac{\pi}{2}$). Which of the following are always true?
a.) $\vec{X} \cdot \vec{Y}=\cos \phi$
b.) $\vec{X} \cdot \vec{Y}<0$
c.) $\|\vec{X} \times \vec{Y}\|<1$
d.) $\|\vec{X} \times \vec{Y}\|<\cos \phi$
e.) $\vec{X} \cdot \vec{Y}>0$
f.) $\vec{X} \cdot \vec{Y} \leq 1$
5. (10 points) Suppose X, Y, and Z are the vertices of a triangle (as in the digram below). Let $\vec{e}_{1}=Y-X$ and $\overrightarrow{e_{2}}=Y-Z$. Give an expression for X using only $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}$, and Z.

6. (20 points) Let $\vec{A}=\{2,-2,3\}$ and $\vec{B}=\{-3,12,4\}$. Compute the following:
a.) $\vec{A} \cdot \vec{B}$
c.) $\|\vec{A}+\vec{B}\|$
b.) $\vec{A} \times \vec{B}$
d.) $\|\vec{B}\|$
