Quiz 1

Advanced Computer Graphics II

Instructor: Peter Shirley and Steven Parker

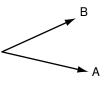
Date: January 21, 2009

1. (20 points) Suppose \vec{A} and \vec{B} are both non-zero vectors. Let $\vec{A} = \{a_x, a_y, a_z\}$ and $\vec{B} = \{b_x, b_y, b_z\}$. Further, let θ be the angle between them $(0 \le \theta \le \pi)$. Write an expression for each of the following in terms of a_x, a_y, a_z, b_x , b_y , and b_z :

(Note: To simplify the expressions, intermediate variables are allowed.)

a.) $\sin \theta$	b.) $\vec{A} \cdot \vec{B}$
c.) $\cos \theta$	d.) $\vec{A} \times \vec{B}$

2. (10 points) Let $\vec{C} = \vec{A} \times \vec{B}$. In the following diagram, is \vec{C} pointing into or out of the page (assuming a right-hand coordinate system)?



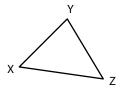
3. (10 points) Write the matrix corresponding to the following system of equations:

4. (30 points) Let \vec{X} and \vec{Y} be unit vectors, with ϕ the acute angle between them $(0 \le \phi < \frac{\pi}{2})$. Which of the following are always true?

a.) $\vec{X} \cdot \vec{Y} = \cos \phi$	b.) $\vec{X} \cdot \vec{Y} < 0$	c.) $\ \vec{X} \times \vec{Y}\ < 1$

d.) $\|\vec{X} \times \vec{Y}\| < \cos \phi$ e.) $\vec{X} \cdot \vec{Y} > 0$ f.) $\vec{X} \cdot \vec{Y} \le 1$

5. (10 points) Suppose X, Y, and Z are the vertices of a triangle (as in the digram below). Let $\vec{e_1} = Y - X$ and $\vec{e_2} = Y - Z$. Give an expression for X using only $\vec{e_1}$, $\vec{e_2}$, and Z.



- 6. (20 points) Let $\vec{A} = \{2, -2, 3\}$ and $\vec{B} = \{-3, 12, 4\}$. Compute the following:
 - a.) $\vec{A} \cdot \vec{B}$ c.) $\|\vec{A} + \vec{B}\|$
 - b.) $\vec{A} \times \vec{B}$ d.) $\|\vec{B}\|$