Linear Regression

Classification models predict a discrete class label y for an input
observation x.

Regression models predict a real-valued outcome y for an input
observation x.

Given a set of “training” observations, linear regression models
produce a regression line that best fits the observed data.

The equation for alineis: y=mx+b
so values of m and b are assigned to fit the data.

The regression line is used to predict the output value for a
new instance x.

Learning for Linear Regression

* Weights are learned to produce estimates of y that are

close to the true values of y in the training data.

¢ We want to minimize the difference between the

predicted value of y and the observed value of y.

* A cost function, such as sum-squared error, is applied to

the set of weights W:

N
cost(W) = Z (ylpredicted_ ylobserved)2

i=0

Multiple Linear Regression

In machine learning, we use multiple features to represent each
instance (observation). This scenario is called multiple linear
regression (but often just called linear regression).

N
y= Wo"‘Z w; * f,
i=1

We can write this formula more generally by assuming there is a
special feature f, that has value 1.

N
y=2 wWFf = werF
i=0 (called the dot product)

Logistic Regression

* Most NLP problems are classification tasks where we
want a class label and ideally a probability of being in
the class.

* But linear regression models produce a real number,
not a probability.

* Logistic regression models use a linear function to
estimate the probability of a class label.

For binary classification, we want: P(y = true | x)



The Odds Ratio The Logistic Function

An odds ratio is the ratio of two probabilities: the probability Using algebraic manipulation, we can solve the previous
of being in a class vs. the probability of not being in the class: equation for the probabilities we want:
P(y =true | x) I
1-P(y=true | x) Range = [0, =] P(y =true| x) = 1 4 gW-F
But we want to learn this with a linear predictor w * f, which e-W*F
has Range = [-e°, =]. So we use a logarithm: Ply =false| x) = -~ cwer
P(y = true | x)
In ( 1-P(y=true | x) =WeF We can now use the linear function W ¢ F for classification

(see textbook for derivation):

In general, we’re using the logit (log odds) function: N

* : _
Z w,*f. >0  predictsy=true
i=0

P
logit(P(x)) = In %P)(x))

Maximum Entropy (MaxEnt) Modeling The MaxEnt Formula

* In NLP, we often have classification tasks that involve many N
categories (e.g., POS tags or Named Entity Types). exp(% W * )
i=
Plc | x) =
* Multinomial logistic regression (also called maximum entropy (1) 2 x (% Wk f)
modeling or MaxEnt) generalizes to multiple classes. o P o e
* The family of classifiers that combine weights linearly and use the N
sum as an exponent are called exponential or log-linear models. We define the normalization factor Z = 2 exp(z Wi ¥ fi)
c'eC i=0

* The probability of class ¢ given an input observation x is:

N
P(c| x)= 1/2 exp(z w; * fi)
i=0

1 N
) Plc|x)= exp(% W, * )
* Zis a normalizing factor that ensures the probabilities sum to 1. =
NOTE: exp(x) is the same as e*



MaxEnt probability example

Suppose these weights have been learned:

wyg |2 8 4 .01 1 5
way |8 .07 -2 33 6 -1.3

And you have an example x that you want to classify, which has
the following feature values:

VB 0 1 0 1 1 0

|
[
S

P(VBl X) = e (.8+.01+.1)/ (e (.8+.01+.1) +e (8-13)) —

P(NN | X) = e (.8-1.3) / (e (‘8+‘01+.1)+ e (.8-1.3)) 20

MEMMs vs. HMMs

Maximum entropy Markov models (MEMMs) extend the MaxEnt
classification model for sequence tagging.

HMMs incorporate two probabilities: P(label, | label, ;) and
P(word, | label,). MEMMs allow us to encode a larger set of
features into a sequential model.

MEMMs make decisions for the entire sequence at once, like
Viterbi decoding with HMMs.

HMMs are a generative model that optimize for P(W|T), because
we flipped the equation with Bayes Rule: argmax P(W|T)*P(T)

MEMMs are a discriminative model that optimize for P(T|W).

Sliding Window Classifiers

For tagging problems, one option is to use a regular (non-

sequential) classifier that looks at features surrounding the
targeted word.

We can create a classifier that encodes features for k words

preceding w and k words following w. For example, if k=3 then:

Wi W, W, W W, W, Wy

The classifier can then be applied to each word, one at a time,
sliding this window from left to right.

This approach can work well. But the decisions are local: the
classifier must make a hard decision about a word before making
decisions about subsequent words.

MEMM modeling

MEMMs train a single probabilistic model to estimate:

argmax P(T|W) = argmax I P(tag, | word, tag,,)
T T i

1

MaxEnt is used to estimate the probability of a tag for word given
the tag for the previous word as well as other features. Q is the set
of states and O is the set of observations (words):

N
P(Q | O) = 1}1 P(q; | 0.1, 0)

More generally, we can encode multiple features as:

FN 1
P 1 a0 =gy oP(2 W *floa)



Summary

Logistic regression classifiers are commonly used for binary
classification tasks because they are simple and provide
probability estimates for a class.

MaxEnt classifiers are also log-linear models that provide
probabilities, but also allow for many category labels.

MEMMs are widely used sequential tagging models that allow
for rich feature sets and work quite well for many tasks.

Conditional Random Fields (CRF) models are discriminative
undirected probabilistic graphical models that are also widely
used for sequence tagging. They work well, but training can be
slow.



