Linear Regression

- Classification models predict a discrete class label y for an input observation x.
- Regression models predict a real-valued outcome y for an input observation x.
- Given a set of "training" observations, linear regression models produce a regression line that best fits the observed data.

The equation for a line is: y = mx + b so values of m and b are assigned to fit the data.

 The regression line is used to predict the output value for a new instance x.

Learning for Linear Regression

- Weights are learned to produce estimates of y that are close to the true values of y in the training data.
- We want to minimize the difference between the predicted value of y and the observed value of y.
- A cost function, such as *sum-squared error*, is applied to the set of weights W:

$$cost(W) = \sum_{i=0}^{N} (y_{predicted}^{i} - y_{observed}^{i})^{2}$$

Multiple Linear Regression

In machine learning, we use *multiple* features to represent each instance (observation). This scenario is called *multiple linear regression* (but often just called linear regression).

$$y = w_0 + \sum_{i=1}^{N} w_i * f_i$$

We can write this formula more generally by assuming there is a special feature f_0 that has value 1.

$$y = \sum_{i=0}^{N} w_i * f_i = W • F$$
(called the dot product)

Logistic Regression

- Most NLP problems are classification tasks where we want a class label and ideally a probability of being in the class.
- But linear regression models produce a real number, not a probability.
- **Logistic regression** models use a linear function to estimate the probability of a class label.

For binary classification, we want: $P(y = true \mid x)$

The Odds Ratio

An **odds ratio** is the ratio of two probabilities: the probability of being in a class vs. the probability of not being in the class:

$$\frac{P(y = \text{true } | x)}{1 - P(y = \text{true } | x)}$$
 Range = $[0, \infty]$

But we want to learn this with a linear predictor w * f, which has Range = $[-\infty, \infty]$. So we use a logarithm:

$$\ln \left(\frac{P(y = \text{true } | x)}{1 - P(y = \text{true } | x)} \right) = W \cdot F$$

In general, we're using the logit (log odds) function:

$$logit(P(x)) = ln \left(\frac{P(x)}{1 - P(x)} \right)$$

Maximum Entropy (MaxEnt) Modeling

- In NLP, we often have classification tasks that involve many categories (e.g., POS tags or Named Entity Types).
- Multinomial logistic regression (also called maximum entropy modeling or MaxEnt) generalizes to multiple classes.
- The family of classifiers that combine weights linearly and use the sum as an exponent are called *exponential* or *log-linear* models.
- The probability of class c given an input observation x is:

$$P(c \mid x) = 1/Z \exp(\sum_{i=0}^{N} w_i * f_i)$$

Z is a normalizing factor that ensures the probabilities sum to 1.
 NOTE: exp(x) is the same as e^x

The Logistic Function

Using algebraic manipulation, we can solve the previous equation for the probabilities we want:

$$P(y = \text{true} \mid x) = \frac{1}{1 + e^{-W \cdot F}}$$

$$P(y = false | x) = \frac{e^{-W^{\bullet}F}}{1 + e^{-W^{\bullet}F}}$$

We can now use the linear function W • F for classification (see textbook for derivation):

$$\sum_{i=0}^{N} w_i * f_i > 0 \quad \text{predicts } y = \text{true}$$

The MaxEnt Formula

$$P(c \mid x) = \frac{\exp(\sum_{i=0}^{N} w_{ci} * f_{i})}{\sum_{c' \in C} \exp(\sum_{i=0}^{N} w_{c'i} * f_{i})}$$

We define the **normalization factor Z** = $\sum_{c' \in C} exp(\sum_{i=0}^{N} w_{c'i} * f_i)$

P(c | x) =
$$\frac{1}{Z} \exp(\sum_{i=0}^{N} w_{ci} * f_i)$$

MaxEnt probability example

Suppose these weights have been learned:

	f1	f2	f3	f4	f5	f6
w _{VB}	.2	.8	4	.01	.1	.5
w _{nn}	.8	.07	2	.33	6	-1.3

And you have an example x that you want to classify, which has the following feature values:

	f1	f2	f3	f4	f5	f6
VB	0	1	0	1	1	0
NN	1	0	0	0	0	1

$$P(VB | x) = e^{(.8+.01+.1)} / (e^{(.8+.01+.1)} + e^{(.8-1.3))} = .80$$

 $P(NN | x) = e^{(.8-1.3)} / (e^{(.8+.01+.1)} + e^{(.8-1.3))} = .20$

MEMMs vs. HMMs

- Maximum entropy Markov models (MEMMs) extend the MaxEnt classification model for sequence tagging.
- HMMs incorporate two probabilities: P(label_i | label_{i-1}) and P(word_i | label_i). MEMMs allow us to encode a larger set of features into a sequential model.
- MEMMs make decisions for the entire sequence at once, like Viterbi decoding with HMMs.
- HMMs are a generative model that optimize for P(W|T), because
 we flipped the equation with Bayes Rule: argmax P(W|T)*P(T)
- MEMMs are a discriminative model that optimize for P(T|W).

Sliding Window Classifiers

- For tagging problems, one option is to use a regular (nonsequential) classifier that looks at features surrounding the targeted word.
- We can create a classifier that encodes features for k words preceding w and k words following w. For example, if k=3 then:

$$\mathbf{W}_{\text{-3}} \ \mathbf{W}_{\text{-2}} \ \mathbf{W}_{\text{-1}} \ \mathbf{W} \ \mathbf{W}_{1} \ \mathbf{W}_{2} \ \mathbf{W}_{3}$$

- The classifier can then be applied to each word, one at a time, sliding this window from left to right.
- This approach can work well. But the decisions are local: the classifier must make a hard decision about a word before making decisions about subsequent words.

MEMM modeling

• MEMMs train a single probabilistic model to estimate:

$$\underset{T}{\operatorname{argmax}} P(T|W) = \underset{T}{\operatorname{argmax}} \prod_{i} P(\operatorname{tag}_{i} | \operatorname{word}_{i}, \operatorname{tag}_{i-1})$$

• MaxEnt is used to estimate the probability of a tag for word given the tag for the previous word as well as other features. Q is the set of states and O is the set of observations (words):

$$P(Q \mid O) = \prod_{i=1}^{N} P(q_i \mid q_{i-1}, o_i)$$

• More generally, we can encode multiple features as:

P(q | q', o) =
$$\frac{1}{Z(o,q')} \exp(\sum_{i} w_{i} * f_{i}(o,q))$$

Summary

- Logistic regression classifiers are commonly used for binary classification tasks because they are simple and provide probability estimates for a class.
- MaxEnt classifiers are also log-linear models that provide probabilities, but also allow for many category labels.
- MEMMs are widely used sequential tagging models that allow for rich feature sets and work quite well for many tasks.
- Conditional Random Fields (CRF) models are discriminative undirected probabilistic graphical models that are also widely used for sequence tagging. They work well, but training can be slow.