Discovering Negative Categories to Improve
Semantic Lexicon Induction

Learning multiple semantic categories simultaneously improves
bootstrapping because the categories constrain each other.

Nevertheless, bootstrappers often begin to acquire instances of
new, undesired categories.

When this behavior is observed, additional “negative” semantic
categories can be manually defined to draw away the undesired
words and contexts.

But ... manually defining negative categories is a form of human
supervision. And it typically requires refinement by iteratively
observing the system’s behavior.

NEG-FINDER Flowchart

Initial Lexicon Clustered Terms Negative Lexicon

Figure 1: NEG-FINDER: Local negative discovery

Discovering Negative Categories by Clustering

Drifted Terms

MclIntosh’s NEG-FINDER system automatically discovers
negative categories by clustering terms that have
semantically drifted.

WMEB detected terms that have drifted from the original
semantic category, but they were simply discarded.

NEG-FINDER caches the drifted terms and then groups
similar drifted terms via clustering.

The goal is to automatically identify groups of drifted
terms that represent cohesive and competing categories.

Clustering Drifted Terms
Hierarchical agglomerative clustering is used to group
similar terms.

— initially, each term is assigned to an individual cluster.

— the clusters are iteratively merged based on a similarity metric,
until just one cluster (containing everything) remains.

The similarity of 2 clusters is the average distributional
similarity between all pairs of terms across the clusters.

— they used the similarity metric for detecting semantic drift:
context vectors with t-test weights & weighted Jaccard metric

Clustering performed when drift cache has 20+ terms.



Identifying Negative Clusters

Two strategies were tried to identify useful negative category
clusters.

General observation - in agglomerative clustering, the most
similar terms are merged first.

Maximum Clustering: identify the kK most similar terms by exiting
the clustering process as soon as a cluster of size k is formed.

Outlier Clustering:
1. identify the drifted term t that is least similar to the first n
terms in the lexicon (this has already been pre-computed for
drift detection).

2. exit the clustering process when a cluster of size k is formed
that contains term t.

Local vs. Global Discovery

Different strategies were also tried for learning negative
categories locally (based on individual categories) and globally
(based on the entire lexicon).

Local Discovery: each category has its own local drift cache, which
is clustered independently from the others.

Global Discovery: all drifted terms are pooled in a single, global
cache. This may be beneficial if multiple categories drift into the
same undesired semantic classes.

Mixture Discovery: both local and global drift caches are
maintained (i.e., a drifted term goes into both caches). Clustering
is performed on both caches.

Harvesting Patterns for the Negative
Categories

* When a negative cluster is identified, the terms in the
cluster become the seed words for the new category.

* Patterns must then be extracted for the category.

— All patterns that co-occur with a negative seed are extracted
and ranked with respect to the seeds.

— The top-scoring m patterns are saved for the negative category.

* |f a pattern previously used for another category co-
occurs with a negative seed, the pattern is discarded.

Manually Defined Negative

Categories
Author identified categories by
observing the behavior of WMEB
New Category Drifted from
AMINO ACID ~ MUTATION CATEGORY |SEED TERMS
ANIMAL/BODY  CELL/DIS/SIGN 1 AMINO ACID |arginine cysteine glycine glutamate histamine
ORGANISM DIS ANIMAL insect mammal mice mouse rats
| BODY PART |breast eye liver muscle spleen
ORGANISM |Bartonella Borrelia Cryptosporidium
Salmonella toxoplasma
2 AMINO ACID|Asn Gly His Leu Valine
ANIMAL animals dogs larvae rabbits rodents
ORGANISM |Canidia Shigella Scedosporium Salmonella
Yersinia
GENERIC decrease effects events increase response
U’:> MODIFIERS |acute deep intrauterine postoperative
. secondd
?ndePendem domjcun expert PEOPLE childre:rgemales men subjects women
identified categories SAMPLE biopsies CFU sample specimens tissues

Table 3: Manually crafted negative categories



Influence of Manually Defined
Negative Categories
First, they measured the impact of the manually defined

negative categories as average precision over the 10 target
categories:

1-500 1-1000
WMEB-DRIFT | 74.3 68.6
+negative 1 87.7 82.8
+negative 2 83.8 77.8

Table 4: Influence of negative categories

Adding negative categories clearly improves performance!

Restarting with the Discovered Negative
Categories

Previously, the bootstrapper could only benefit from the discovered
categories after they were learned (i.e., after many iterations).

These experiments restart the bootstrapping process, providing it
with the automatically discovered negative categories initially.

1-200 201-400 401-600 601-800 801-1000 | 1-1000

WMEB-DRIFT
+negative 1 90.5 873 82.0 74.6 79.8 82.8
+negative 2 87.8 822 78.7 76.1 63.3 77.8

WMEB-DRIFT
+restart +local 85.5 82.6 76.5 75.7 68.5 78.4
+restart +global 84.0 83.8 79.1 74.8 69.5 79.7
+restart +mixture 85.2 85.0 82.3 72.5 727 81.4

Table 7: Performance of WMEB-DRIFT using negative categories discovered by NEG-FINDER

Comparative Results with Different
Drift Cache Strategies

1-200 201-400 401-600 601-800 801-1000 | 1-1000
WMEB-DRIFT 79.5 74.8 64.7 61.9 62.1 68.6
NEG-FINDER
First discovered 79.5 743 64.8 67.8 66.6 70.7
Local discovery
+maximum 79.5 74.8 67.3 69.3 70.5 722
+outlier 79.5 739 64.8 67.8 71.0 715
Global discovery
+maximum 79.5 739 65.7 732 72.7 734
+outlier 79.5 74.7 65.6 714 68.2 72.1
Mixture discovery
+maximum 79.5 74.7 69.3 733 72.8 74.0
+outlier 79.5 752 69.7 72.0 69.4 732

Table 5: Performance comparison of WMEB-DRIFT and NEG-FINDER

Combining Manually Defined and
Automatically Discovered Negative Categories

Question: Can NEG-FINDER learn useful negative categories beyond
what a human expert defines?

The system was initialized with the 10 target categories AND the
manually defined negative categories:

601-800 801-10001-1000

WMEB-DRIFT
+negative 1 74.6 79.8 82.8
NEG-FINDER
+negative 1 +local 76.4 80.1 83.2
+negative 1 +global 71.5 76.0 82.7
+negative 1 +mixture| 76.7 79.9 83.2

Table 8: Performance of NEG-FINDER with manually
crafted negative categories



Analysis of Results for Individual Semantic

Categories

ANTI CELL DISE SIGN TUMR
WMEB-DRIFT 929 478 493 279 395
+negative 1 91.6 73.1 87.8 76.5 48.7
+negative 2 85.8 68.0 842 713 163
NEG-FINDER
+mixture 949 739 56.0 410 422
+mixture +negative 1| 90.8 77.2 87.8 782 48.2
WMEB-DRIFT
+restart +local 89.9 78.8 71.6 73.1 322
+restart +global 94.6 79.0 819 626 352
+restart +mixture 92.6 81.1 91.1 63.6 475

Table 9: Individual category results (1-1000 terms)

Key Observations

* Ambiguous seed words often lead to semantic drift.

Roman God Seeds: Minerva, Neptune, Baccus, Juno, Apollo

Expanded List: Mars, Venus, Moon, Mercury, asteroid, Jupiter,
Earth, comet, Sonne, Sun, ...

* Ambiguous entities that share one sense usually do not

share other senses that are semantically similar.

— For example: Apple and Sun both share the sense COMPANY.

— But their other senses (FRUIT and CELESTIAL BODY) are

semantically different.

Semi-Automatic Entity Set Refinement
[Vyas and Pantel, NAACL 2009]

Some search engine companies maintain lists of named
entities to improve search results.

Manually constructing and maintaining named entity
lists is expensive, so they are interested in automated
set expansion techniques.

Semi-supervised techniques are useful for targeting
specific desired categories, with minimal human input.

But manual refinements and error correction are often
needed since these techniques are not perfect and can
suffer from semantic drift.

Semi-Supervised Refinement

Idea: incorporate relevance feedback that asks a human
to identify (at most) one error in each iteration.

1. remove items that are distributionally similar to the
manually identified errors.

2. dynamically change the feature space based on the
error

3. recompute the similarity of each entity with respect
to the seeds, and discard those with low similarity



PMI

Pointwise mutual information (PMI) measures the
degree to which two words are statistically dependent.

PMI(w,, w,) = Iogz{ P(w, & w,) ]
)

P(w,) * P(w,

If PMI =0, then the words are independent
If PMI > 0, then the words are dependent (i.e., tend to
co-occur)

Feature Modification Method (FMM)

* |dea: identify the features of the erroneous word that
represent the unintended semantic class.

* For example, for Earth, you may find contextual features
such as: planet, observe, launch, orbit, ...

1. Create a centroid context vector for the seeds by taking a
weighted average of the seed words’ contexts.

2. ldentify the features that intersect with the erroneous word and
remove them.

3. Rescore all entities with the modified feature vector and discard
entities that have a low similarity to the seeds.

Similarity Method (SIM)

Create context vectors for each item using a window size
of 1, pointwise mutual information (PMI) weighting, and
the cosine similarity metric.

Compute the similarity between each entity in the set
and the manually identified error. Remove all entities are
are semantically similar using a threshold.

In the previous example, suppose Earth is labeled as an
error.

— Moon, asteroid, comet, Sun would be removed

— Mars, Venus, Mercury, Jupiter would also be removed X

Gold Standard Data Sets

Gold standard evaluation data was created by scraping
lists off Wikipedia.

Lists for 50 semantic categories were generated. On
average, each list contained 208 items (minimum of 11,
maximum of 1,116).

Example sets: classical pianists, Spanish provinces, Texas
counties, male Tennis players, first ladies, cocktails,
bottled water brands, Archbishops of Canterbury

Note: these lists are undoubtedly incomplete! And
requiring an exact match is very restrictive. So accuracy
against these lists will be a lower bound.



Evaluation R-precision Results

Table 1. R-precision of the three methods with 95% confi-

As a baseline, they evaluated the results of simply dence bounds

removing the first incorrect entry for each iteration.
ITERATION BASELINE SIM FMM
A distributional set expansion algorithm similar to 1 021920012 023420013  0.220£0.015
[Sarmento et al., 2007] was used. 2 022320013 0.242#0.014  0.227+0.017
. . . 3 0.22740.013 0.251+0.015 0.235+0.019
They performed 1,000 trials with dlf'fer_ent.seed .sets. ‘ 0200013  S26MMIE 025220031
Results are reported for 10 bootstrapping iterations. 5 023510014 02660017  8267:0022
The evaluation metric was R-precision, which is precision ¢ 5650016 O2SS0T S SIS
. . . . 7 023840014 027320018  0.2940.023
after generating k items, where k is the size of the gold
8 0.24+0.014 0.28:0.018  0.3030.024
standard set.
9 024240014 028520018  0.315£0.025
10 0.243£0.014 0.286+0.018 0.322+0.025

Conclusions

Bootstrapped learning of semantic categories often
suffers from semantic drift.

Automatically identifying negative, competing classes can
help to draw away incorrect terms and steer the
bootstrapping process.

Distributional semantic similarity methods are useful and
easy to apply because they don’t require supervision.

But, semantic lexicon induction is still far from perfect!

And evaluating the quality of an induced lexicon is
challenging, especially with respect to recall.



