#### **Part-Whole Relations**

**Meronymy** refers to part-whole relations, which are ubiquitous.

Example from [Girju et al., 2003]:

The car's mail messenger is busy at work in the **mail car** as the train moves along. Through the open **side door** of the car, moving scenery can be seen. The worker is alarmed when he hears an unusual sound. He peeks through the door's **keyhole** leading to the tender and locomotive **cab** and sees the two bandits trying to break through the express **car door**.

Part-of (mail car, train) Part-of (cab, locomotive)
Part-of (side door, car) Part-of (door, express car)
Part-of (keyhole, door) Part-of (car, express [train])

# Finding Parts in Very Large Corpora

- [Berland & Charniak, ACL 1999] published an early study using statistical methods to produce word lists that represent "parts" of a object.
- Motivated by Hearst's hyponym patterns, they identified meronym patterns and instantiated them with a target object (as the "whole").
- Probabilistic measures were then used to rank the words that occurred in these patterns.
- The top 50 proposed words for 6 objects (*book, building, car, hospital, plant, school*) were judged to be 55% accurate.

## Types of Part-Whole Relations

WordNet includes three types of part-whole relations:

Member Of Member Of (UK, NATO)

Stuff Of Stuff Of (carbon, coal)

General Part Of Part Of (leg, table)

Researchers have also identified additional types, such as:

Portion-Mass meter, kilometer Feature-Activity paying, shopping Place-Area oasis, desert

#### Top Learned Words

**Book:** author, subtitle, co-author, foreword, publication, epigraph, co-editor, cover, copy, page, title, authorship, manuscript, chapter, epilogue, publisher, jacket, subject, double-page, sale, excerpt

**Building:** rubble, floor, façade, basement, roof, atrium, exterior, tenant, foortop, wreckage, stairwell, shell, demolition, balcony, hallway, renovation, janitor, rotunda, entrance, hulk, wall, ruin

**Car:** trunk, windshield, dashboard, headlight, wheel, ignition, hood, driver, radiator, shifter, occupant, brake, vent, fender, tailpipe, bumper, pipe, airbag, seat, speedometer, converter, backseat

**Hospital:** ward, radiologist, trograncic, mortuary, hopewell, clinic, aneasthetist, ground, patient, floor, unit, room, entrance, doctor, administrator, corridor, staff, department, bed, pharmacist, director

# **Learning Semantic Constraints for Meronomy**

[Girju et al., HLT-NAACL 2003]

- [Girju et al., 2003] developed a technique to identify instances of part-whole relations in text.
- They use lexico-syntactic meronym patterns to locate potential instances of part-whole relations.
- They use supervised machine learning to automatically learn semantic constraints that can be applied to the nouns in the patterns.
- The learned semantic constraints produce good accuracy for identifying part-whole instances that occur in three specific patterns.

# **Identifying Lexico-Syntactic Patterns**

Lexico-syntactic patterns were extracted from 20,000 sentences to see what expressions are most common.

- 1) Selected 100 part-whole pairs from WordNet and extracted sentences that contain both concepts.
- 2) Manually inspected the sentences and retained only those where the pair refers to meronymy.
- 3) Extracted lexico-syntactic expressions that link the two concepts.

# Lexico-Syntactic Meronymy Patterns

• Explicit, unambiguous part-whole constructions

The substance **consists of** two ingredients.

The cloud **was made of** dust. Iceland **is a member of** NATO.

• Explicit, ambiguous part-whole constructions

The horn **is part of** the car. The car **has** a horn.

• Implicit part-whole constructions (ambiguous)

girl's mouth, eyes of the baby, door knob

#### The Extracted Part-Whole Patterns

- 535 part-whole occurrences were found.
- 493 (92%) were phrase-level patterns; 36 distinct patterns. The most frequent:

NP1 of NP2: 173 times (35%)

NP1 's NP2 : 71 times (14%)

• 42 (8%) were sentence-level patterns; 18 distinct. The most frequent:

NP1 verb NP2 : 18 times (43%)

#### **Learning Semantic Constraints**

- The general approach is to automatically learn semantic constraints for the nouns in meronymy patterns.
- WordNet's semantic hierarchy is used as the source for semantic categories.
- The C4.5 decision tree machine learning algorithm learns rules to decide whether a pair of semantic classes is likely to be in a part-whole relation.
- Training data consisted of:
   34,609 positive NP pairs (from manual annotations + WordNet)
   46,971 negative NP pairs (from manual annotations)

## Learning from Unambiguous Examples

- The C4.5 decision tree algorithm is applied to the unambiguous examples and rules are extracted from the learned decision tree.
- There are two features, *part* and *whole*, and the values are the semantic classes.
- Using 10-fold cross-validation, 10 sets of rules were learned.
- All of the learned rules were ranked based on frequency and average accuracy. Rules that occurred in at least 7 of the 10 sets with accuracy > 50% were selected.

#### Generalizing the Training Examples

• For each NP pair, generalize the words to their semantic classes and represent as triples with the class label (*yes* if meronymy, *no* if not meronymy). For example:

```
<aria#1; opera#1; yes> → <entity#1; abstraction#1; yes>
```

 Group the semantic class pairs based on whether they are all Positive examples, Negative examples, or Ambiguous. For example:

```
<apartment#1; woman#1; no> → <entity#1; entity#1; no>
<hand#1; woman#1; yes> → <entity#1; entity#1; yes>
```

The unambiguous examples are used for learning.

# Specializing the Ambiguous Examples

- The ambiguous examples are gradually specialized until they are unambiguous.
- Initially, each semantic class is a root node in WordNet.
   Each class is specialized by replacing it with its first hyponym.
- If the first attempt at specialization still produces ambiguous results, then it is further specialized.
- The specialization process stops when there is no ambiguity or when it can't be specialized any further.

# Specialization Example

# Section of WordNet hierarchy: whole#2 part#7 causal\_agent#1 apartment#1 hand#1 women#1

```
<apartment#1, women#1, no> → <entity#1, #entity#1, no>
<hand#1, women#1, yes> → <entity#1, #entity#1, yes>

→ <whole#1, #causal_agent#1, no>
→ <part#1, #causal_agent#1, yes>
```

#### **Evaluation Results**

 Accuracy was measured based on manual validation of a test set containing pairs from the 3 meronym patterns.

- An additional 43 manner relations occurred in different contexts. Including them would give 72% recall.
- Errors were primarily attributed to the verb "have" and genitives ('s), which are very ambiguous in the relations that they can convey.

# **Constraint Learning Flowchart**

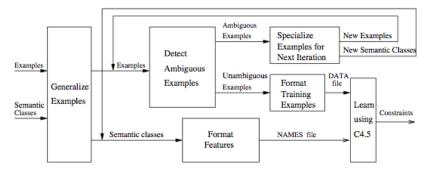



Figure 2: Architecture of the constraint learning procedure.

## **Summary of Results**

| Number of Relations                        | Y verb X | Y's X  | X of Y | All patterns |
|--------------------------------------------|----------|--------|--------|--------------|
| Number of patterns                         | 280      | 225    | 962    | 1467         |
| Number of correct<br>relations             | 18       | 23     | 78     | 119          |
| Number of relations<br>retrieved           | 25       | 24     | 91     | 140          |
| Number of correctly<br>retrieved relations | 18       | 22     | 77     | 117          |
| Precision                                  | 72%      | 91.16% | 84.61% | 83.57%       |
| Recall                                     | 100%     | 95.65% | 98.71% | 98.31%       |

# **Examples of Learned Constraints**

| object#1          | social_event#1    | 1 | 69.84 | 9  | scene#4 - movie#1                    |
|-------------------|-------------------|---|-------|----|--------------------------------------|
| whole#2           | social_event#1    | 1 | 63.00 | 7  | sequence#3 - movie#1                 |
| entity#1          | group#1           | 1 |       |    | academician#1 - academy#2            |
| *                 |                   |   |       |    | king#1 - royalty#1                   |
| location#1        | people#1          | 0 | 50.00 | 8  | section#3 - nation#1                 |
| organism#1        | system#1          | 0 | 50.00 | 8  | archbishop#1 - York#1                |
| group#1           | group#1           | 1 |       |    | military_reserve#1 - military_unit#1 |
|                   |                   |   |       |    | amoebida#1 - genus_amoeba#1          |
| collection#1      | arrangement#2     | 0 | 92.60 | 10 | data#1 - table#1                     |
| arrangement#2     | social_group#1    | 0 | 85.70 | 10 | hierarchy#1 - church#1               |
| system#1          | collection#1      | 0 | 85.70 | 10 | economy#1 - selection#2              |
| entity#1          | entity#1          | 1 |       |    | door#4 - car#4                       |
|                   |                   |   |       |    | point#15 - knife#1                   |
| point#2           | object#1          | 0 | 89.55 | 10 | place#1 - wall#2                     |
| location#1        | object#1          | 1 |       |    | base#16 - box#1                      |
| geographic_area#1 | instrumentality#3 | 0 | 80.75 | 8  | graveyard#1 - ship#1                 |
| person#1          | person#1          | 0 | 89.55 | 10 | child#1 - woman#1                    |
| object#1          | organism#1        | 0 |       |    | desk#1 - man#1 - No                  |
| !substance#1      | !plant#2          |   |       |    | feather#1 - bird#1 - Yes             |
| !natural_object#1 | !animal#1         |   |       |    | blade#1 - grass#1 - Yes              |
| -                 |                   |   |       |    | body#1 - man#1 - Yes                 |

# Summary

- Meronymic relations are common and difficult to recognize accurately based solely on contextual patterns.
- Applying semantic constraints to noun pairs can yield good accuracy, and semantic constraints can be learned.
- Both positive constraints (meronymic pair) and negative constraints (not meronymic pair) were useful.
- However, this work only showed the benefit of semantic constraints applied to a few meronymic patterns. Finding all part-whole relations is still an open problem!