Narrative Schemas

Narrative event chains consist of events that share a
single participant, the protagonist.

A Narrative Schema [Chambers & Jurafsky, 2009] is a set
of narrative chains that share arguments, so a schema
can include multiple participants.

The schema learning process also can induce types for
the arguments (role fillers) of events.

This work focuses on identifying related events and
inducing their arguments. The task of temporally
ordering the events is left for future work.

Narrative Chain Terminology
A narrative event chain is represented by a tuple (L, O), where:

Lis a set of event slots: (verb, dependency) pairs
O is a partial (temporal) ordering

L = (X pleads), (X admits), (convicted X), (sentenced X)
O = {(pleads, convicted), (convicted, sentenced), ...}

A graphical view is often more intuitive:

admits (X admits)

N
)
pleads (} (Xpleads)

") convicted (convicted X)

~/ N7

.~
o

sentenced (sentenced X)

Sets of Events and Participants

The goal is to learn:

(1) sets of events that correspond to common, co-occurring, and
(ideally) partially ordered sets of events.

(2) the types of role fillers (arguments) common to the events.

Events Roles
A search B A = Police
A arrc:ast B (B; = ,SD‘//SPeCt
B/plead 9 D= Ju?;/a
D acquitB D convict B
D sentence B

Motivation for Argument Types
Representing argument types creates richer schemas. But argument
types can also help to identify related events more accurately.

For example:
O oty O

") charge O

Without argument types, (fly X) rated higher than (charge X)
because it occurred with all 5 event types in the training data.
But few argument types of (fly X) are shared with the events!

(charge X) shares many argument types with (accuse X), (search
X), and suspect X), e.g., “criminal” and “suspect”.

Typed Narrative Chains

A Typed Narrative Chain is a partially ordered set of event slots that
share an argument (role) which is a member of a set of types R.

Argument types can be lexical units (e.g., head words), noun
clusters, or another semantic representation.

Formally, a typed narrative chain is a tuple (L, P, O) where:
L is a set of event slots: (verb, dependency) pairs
O is a partial (temporal) ordering
P is a set of argument types representing a single role

For example:
L = {(hunt X), (X use), (suspect X), (accuse X), (search X)

O = {(use, hunt), (suspect, search), (suspect, accuse), ...}
P = {person, government, company, criminal, ...}

Example of Learned Typed Events

The following event chain (but the ordering information is
omitted) was induced for a crime scenario.

The four top arguments are shown:

L ={(X arrest), (X charge), (X raid), (X seize), (X confiscate),
(X detain), (X deport)

P = {police, agent, authority, government}

Learning Argument Types

The training corpus is parsed, a coreference resolver is applied,
and events that share participants are extracted.

For each pair of event slots, coreferring arguments are identified,
and the most frequent head word in the coreference chain is
used as the role filler.

For example: (the underlined words are coreferent)

But for a growing proportion of U.S. workers, the troubles really
set in when they apply for unemployment benefits. Many workers
find their benefits challenged.

= <(X apply), (X find), workers> is learned.

Event Slot Similarity with Arguments

The similarity of a new event slot <f, g> with an untyped narrative
chain C of size N is the sum of scores between all pairs:

N
chainsim(C, <f, g>)) = Z sim(<e,, d>, <f, g>)

i=1

The similarity of a new event slot <f, g> with a typed narrative
chain C of size N is based on the argument that maximizes the
chain’s score:

chainsim-new(C, <f, g>)) =
N
max(score(C, a) + Z sim(<e, d>, <f, g>, a)
a i=0

Argument-based Similarity

The similarity function is adapted to be specific to an argument a:

sim(<e, d>, <e’, d’>, a) = PMl(<e,d>,<e’,d’>)
+ A log freq(<e,d>,<e’,d’>,a)

where:
A is a weighting parameter
freq(b,b’,a) is the frequency of a occurring as arguments to b and b’

The score for a chain C of size N for argument g is:
N-1 N

score(C, a) = zl 'Zl sim(<e; d>, <e;, d;>, a)
i=1 j=it+

Adding Events to Schemas

For narrative chains, the best event is identified by comparing
individual event slots with the existing chain, where m is the
number of event slots in the corpus:

max chainsim(c, <v, g>)
0<j<m

For narrative schemas, the best event is identified by comparing
all slots for a verb using the narrative similarity function, where
|v| is the number of verbs in the corpus:

max narsim(N, v))
0<j<|v]|

Event Relatedness with Schemas

For narrative chains, an event is added if its slot (argument) is
consistent with other events in the chain.

For narrative schemas, an event is added only if both its Subject
and Object are consistent with arguments in existing chains.

The similarity function for an event (v) with respect to a narrative
scheme N is computed as:

narsim(N,v) = Z max(f3, max chainsim-new(c, <v, d>))
deD, ceCy
where:
Cy is the set of chains in the narrative scheme N
[is a base score, in case no existing chain is a good match

Merging Typed Chains

3 d amest) convict ")
Type t- -
ypP N sentence {)

Chains charge o
police,agent judge,jury
police, criminal,
agent suspect
— gy
plead . innocent

1 Unordered -
convict

Schema judge,
Jury sentence

Evaluation Details

* Training Corpus: NYT portion of the Gigaword Corpus. A
dependency parser and coreference resolver were applied.

* The clustering procedure was stopped (“and sometimes
continued” ?) at 6 events per schema, because the mean
number of verbs in FrameNet frames is 5-6.

* Alow B value was chosen to limit chain splitting.

* A new schema was built starting with each verb that occurred
in > 3,000 but < 50,000 documents (1,800 verbs in total).

* The top 20 highest scoring schemas were analyzed. These
generally concerned business, politics, crime, or food.

Another Learned Schema Example

The following schema was automatically learned starting with
the verb “convict”:

deliberate
deadlocked o gﬁ‘f%]nd;mg:ols,
found
convict . jury, juror, court,
i judge, tribunal, senate
acquit
sentence

Learned Schema Example

The following schema was automatically learned starting with
the verb “arrest”:

\V4 defendant, nichols,
arrest smith, simpson
charge police, agent,
9 ® authorities, government
seize Py
icense
confiscate
detain] m’mgrant: reporner,
cavalo, migrant, alien
deport

Three of Top Six Scored Schemas

A produce B A € {company, inc, corp, microsoft,
A sell B iraq, co, unit, maker, ... }
A manufacture B
A *market B B € {drug, product, system, zest,
A distribute B software, funds, movie, ...}
A -develop B
:?;::ll% A € {wash, heat, thinly, onion, note}
2 \F:E‘:CIBB B e {po'lulo. ()lli()l.]: n'lushr()om. clove,
A cook B orange, gnocchi }
A chop B
A *uphold B A € {court, judge, justice, panel, osteen,
A *challenge B circuit, nicolau, sporkin, majority, ...}
Arule B
A enforce B B € {law, ban, rule, constitutionality,
A *overturn B conviction, ruling, lawmaker, tax, ...}

A *strike_down B

Next Three of Top Six Scored Schemas

B trade C Ae{}
B

B fellC € {dollar, share, index, mark, currency,
A *quote B stock, yield, price, pound, ...}

B fall C C < {friday, most, year, percent, thursday
B -slipC monday, share, week, dollar, ...}

B rise C

Adetain B A € {police, agent, officer, authorities,

A confiscate B troops, official, investigator, ... }

A seize B

A raid B B € {suspect, government, journalist,

A search B monday, member, citizen, client, ... }
A arrest B

Aown B A € {company, investor, trader, corp,

A *borrow B enron, inc, government, bank, itt, ...}
Asell B

A buy_back B B € {share, stock, stocks, bond, company,
AbuyB security, team, funds, house, ... }

A *repurchase B

Linking Structure Evaluation

The linking structure evaluation assessed the quality of
the linked grammatical relations in a schema.

For each chain in 13 schemas, they identified the
FrameNet frame element that could correctly fill the
most verb arguments in the chain. The remaining
arguments were considered incorrect.

These chains had 78 verbs, containing 156 arguments
(subject and object for each verb).

151 arguments were correctly clustered
- 96.8% accuracy.

Qualitative Evaluation

Schemas and frames both represent groups of events (verbs), but
for different purposes:

- schemas group verbs that co-occur in narrative discourse structures

- frames group verbs that share core participants (semantic roles)

Nevertheless, FrameNet’s frame definitions are a source of lexical
information that can be used to qualitatively assess some aspects
of the learned schemas.

Three evaluations are performed: verb groupings, linking
struture, and argument roles.

The verb groupings are based on mapping to the most consistent
frame. But only 13 map, many verbs were not present in
FrameNet, and the evaluation was highly subjective. It’s really an
apples and oranges comparison anyway.

Argument Role Evaluation

The argument role evaluation assesses the quality of the entities
that fill the argument slots.

First, they manually identify the best frame element for each
argument. For example:

“A produces B” = Manufacturing frame
B = Product frame element
The top 10 arguments are evaluated. For example:
— “drug” is a correct Product argument, “test” is incorrect

289 of 400 possible arguments were judged correct
- 72% precision

Narrative Cloze Evaluation Results

1350
1300 |\

1250 4 Chain

1200 Schema

1150

1100 <— Typed Chain

1050 1 S~ Typed Schema

1000 + T
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Training Data Size, based on years 1994 — X

Conclusions

This work represents a nice first step toward learning sets of
related events and their shared participants.

However, much research remains until we can learn coherent,
accurate, and useful event knowledge structures on a large scale.

event representation is still very weak (just verbs)

arguments are limited to subjects and objects

weak semantic representation of the argument types

temporal ordering of the events is largely absent

assessment of whether the learned events are important

evaluating knowledge structures is a challenge in its own right!

