Paraphrasing

* |In natural language, there are many different ways to
say the same thing.

* Some NLP systems aim to learn paraphrases for a given
phrase, usually to identify relation expressions.

X manufactures Y X makes Y

X produces Y Yis a product of X
* |In addition, there are often phrases that suggest a

specific relation even though it is not explicit and it may
not always be true.

X’s Y factory = X manufactures Y

Key Idea

The Distributional Hypothesis: words that occur in the
same contexts tend to have similar meanings.

Previously, distributional similarity methods had been
used to identify semantically similar words based on the
contexts around those words.

The DIRT algorithm flips this approach by applying
distributional similarity measures to identify semantically
related paths in dependency trees.

Each parse tree path links two nouns, which are treated
as the contexts for measuring similarity of the paths.

Discovering Inference Rules

* The DIRT (Discovery of Inference Rules from Text)
algorithm was developed by Lin and Pantel in 2001.

* DIRT’s goal is to learn expressions that link two nouns
and for which a relationship can be inferred. This
includes both paraphrases and expressions that suggest
a relation.

* INPUT: an expression representing a relation, such as
“X manufactures Y’

* OUTPUT: a set of expressions from which the same
relationship can be inferred.

Extended Distributional Hypothesis

Extended Distributional Hypothesis: If two paths occur in
similar contexts, the meanings of the paths tends to be
similar.

Intuitively, similar paths should have similar slot fillers.

“X finds a solution to ¥’ “X solves Y

SrotX StorY StotX SrotY

commission strike committee problem
committee civil war clout crisis

committee crisis government problem

government crisis he mystery

government problem she problem
he problem petition woe

legislator budget deficit  researcher mystery
sheriff dispute sheriff murder




DIRT’s Algorithm

Generate a set of paths through dependency trees that
satisfy a few constraints. In particular, they must link
two nouns.

For each path, generate triples that represent the “slot
fillers” at the ends of the path.

Create a function that computes the similarity of two
paths based on the set of triples (slot fillers) associated
with them.

Given an input phrase, find the paths that are most
similar to the input phrase.

Dependency Path Example

NG VN

John found a solution to the problem.

Figure 1. Example dependency tree.
The path between SlotX=John and SlotY=problem would be:

(SlotX) N:subj:V€&find>V:obj:N->solution=>N:to:N (SlotY)

The path between SlotX=problem and SlotY=John would be:

(SlotX) N:to:N < solution€N:obj:V<find>V:subj:N (SlotY)

Paths in Dependency Trees

A dependency parser is applied to a large text corpus
and every path that links two nouns is extracted.

The noun on the left is called SlotX, and the noun on
the right is called SlotY. So the position of each slot
filler matters!

Only the dependency relations linking two content
words (nouns, verbs, adjectives, adverbs) are used.

Each path is named by concatenating the dependency
relations and words along the path.

All Possible Paths are Extracted

Consider the following sentence:

subj from
/ hv \
/ — mod ‘/R’
They had previously bought bighom sheep from Comstock.

The paths extracted from this sentence and their meanings are:
(@) N:subj:V<&buy—>Vifrom:N
= X buys something from ¥
(b) N:subj:V<&buy—>Viob:N
=Xbuys Y
(c) N:subj:V<&buy—=>Viobj:N—>sheep2>Nn:N
= X buys Y sheep
(d) N:mnn:N <sheep < N:obj:V<&buy—=>Vifrom:N
= X sheep is bought from ¥
(e) N:ob):V<&buy—>Vifrom:N
= X is bought from ¥
An inverse path is also added for each one above.



Triple Database

All of the extracted paths are stored in a Triple Database,
paired with the nouns in the SlotX and SlotY positions.

For example, the previous example sentence would yield
these triples for the triple database:

SlotX Path SlotY
They N:subj:V<&buy>V:from:N Comstock
They N:subj:V<buy->V:obj:N sheep
They N:subj:V<buy>V:obj:N->sheep>N:nn:N bighorn
bighorn  N:nn:N<sheep€<N:obj:V<buy=>V:from:N Comstock
sheep N:obj:V€buy—=>V:from:N Comstock

Slot Similarity

Given a pair of slots: slot,; = (p,, s) and slot, = (p,, s)
their similarity is defined as the ratio of the mutual
information of their shared slot fillers over the mutual
information of all their slot fillers.

T(p,s) is the set of words that fill slot s in path p.

> Ml (p;, s, w) + M1 (p,, s, w)
w e T(p,.s) aT(p,.5)

sim (slot,, slot,) =

2 Mi(p, s, w)+ 2 Mil(p,,s w)
weT(p,,s) w e T(p,,s)

Path Similarity

* Given a phrase as input, DIRT measures the similarity of

the phrase with each path in the Triple Database.

* The most paths are ranked based on their similarity

scores and the Top k most similar paths are returned.

* The similarity between a pair of paths p; and p, is the

geometric mean of their SlotX and SlotY similarity scores.

PathSim(p1,p2) = \/sim(SIotxl,SIotxz) * sim(SlotY,,SlotY,)

Pointwise Mutual Information

Pointwise mutual information (PMI) measures the
degree to which two words are statistically dependent.

P(w; & w,)

PMI(w,, w,) = log, L(W)*p(w)
1 2

DIRT uses mutual information to measure the strength of
association between a path and its slot filler:

| p, Slot, w | X | * Slot, * |

Ml (p, Slot, w) = log,
| p, Slot, * | X | * Slot, w |



Mutual Information Example Example Entries in Triple Database

M1 (will buy, SlotX, Trump) = The mutual information scores between a path
and each slot filler are stored in the triple
| will buy, SlotX, Trump | X | * SlotX, * | database.
|Og2 Xpulg t;;iy from Y:
| will buy, SlotX, * | X | * SlotX, Trump | T dver 1 245
equipment 1 165
police 2 224
rescuer 3 484
where: resident 1 1.60
who 2 132
| will buy, SlotX, Trump| = # times Trump fills SlotX for path will buy SlorY- b ' 7
bus 2 309
| *, SlotX, *| = total # fillers for SlotX in all paths coach . o
feet 1 175
| will buy, SlotX, *| = # fillers in SlotX for path will buy bt 1 273
landslide 1 239
metal 1 209
| * SlotX, Trump|=# times Trump fills SlotX in all paths wreckage 3 4381
Heuristics for Efficiency Examples of Similar Paths

* Computing the similarity with every path is expensive!

Lin & Pantel parsed 1Gb of news texts, which produced 7 bl 3 The fop 28 mue similer patha o'~ setves 7.

million path instances and 231,000 distinct paths. i solved by X Tis resolved in X
Xresolves ¥ Yis solved through X
* They used several heuristics to only consider promising ¥fndsasolutionto I Xrectifies ¥
X tries to solve ¥ X copes with ¥
paths. Given a path p: Xdealswith ¥ X overcomes ¥
Yis resolved by X XeasesY
— Retrieve all paths that share at least one filler with p Xaddresses T Htackles ¥
X seeks a solutionto ¥ X alleviates ¥
. . . X do something about ¥’ X corrects Y
— Discard candidate paths that share < 1% of the same fillers as p X solution to ¥ Xis a solution to ¥

* Compute the similarity of p with all remaining candidate
paths and output the Top k most similar paths.



Experimental Results

They evaluated DIRT by comparing the inference rules that
it produced with human-generated paraphrases for 6
questions in the TREC-8 question answering track.

O

Who is the author of the book, “The Iron Lady: A Biography of

Margaret Thatcher™?

What was the monetary value of the Nobel Peace Prize in 19897
What does the Peugeot company manufacture?

How much did Mercury spend on advertising in 19937

What is the name of the managing director of Apricot Computer?

Why did David Koresh ask the FBI for a word processor?

Examples of Learned Rules

PatHs Xis author of ¥ X manufactares ¥
Manuar ¥ is the work of X makes ¥; X produce ¥; Xisin ¥
VARIATIONS  X;Xisthe writer  business; ¥ is manufactured by X; Yis
of ¥; Xpenmed ¥;  provided by X; ¥'is X's product; ¥'is
X produced ¥; X product from X; ¥is X product; ¥is

authored ¥; X product made by X; ¥ is example of X
chronicled ¥; X product; X is manufacturer of ¥;
wrote ¥ find ¥in X's product line; find Y m X
catalog
DIRT X co-authors Y; X produces Y; X markets Y; X

VARIATIONS Xisco-authorof  develops Y; X is supplier of Y; X
Y;XwrtesY;X  ships Y; X supplies Y; Yis
edits Y; Yis co- manufactured by X; X is maker of Y;
authored by X; Y X introduces Y; X exports Y; X
isauthored by X;  makes Y; X builds Y; X's production
X tells story in of Y; Xunveils Y; Y is bought from
Y, X ranslates X: X's line of Y; X assembles Y; X is
Y;XwrtesinY, Y maker; X's Y factory; X's Y
XnotesinY; ... production; X is manufacturer of Y;
X's Y division; X meets demand for

Y, ...

Results for Q/A Evaluation

For each question, a dependency path was produced and the Top
40 most similar paths were generated by DIRT. These paths were
manually labeled as correct or incorrect.

They were also compared with manually generated paraphrases
to see if additional rules were learned (INT = intersection).

Q# PATHS Max. DIRT InT. Acc.
0, Xisauthorof Y 7 21 2 525%
0, Xis monetary value of Y 6 0 0 N/A
0, X manufactures Y 13 37 4 925%
0. XspendY 7 16 2 00%
spend Xon Y 8 15 3 375%
Q. Xis managing director of ¥ 5 14 1 350%
0, XasksY 2 23 0 575%
asks X for Y 2 14 0 350%
X asks for Y 3 21 3 525%
Summary

DIRT applies distributional similarity measures in a new
way: to identify similar relationship phrases by
considering their slot fillers (arguments) as the contexts.

It is difficult for people to manually generate long lists of
paraphrases, so automatically generating them is

important.

DIRT worked best for paths representing verb arguments.

This approach can work well in many cases, but is not
sufficient to distinguish paths that can take the same sets

of fillers.



