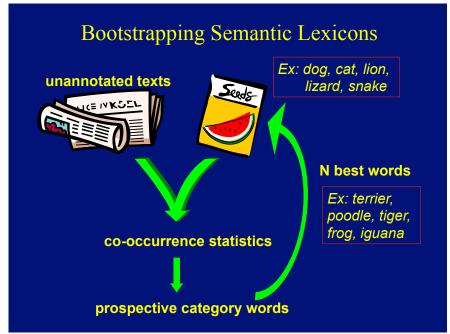
## Motivation

- A *semantic lexicon* contains semantic category assignments for words. For example:
  - blogger  $\longrightarrow$  HUMAN sedan  $\longrightarrow$  VEHICLE AK-47  $\longrightarrow$  WEAPON
- General purpose resources, such as WordNet, are often insufficient for specific domains.

*ANIMAL*: gshep, doxy, lab, labx, m/n, mix, patient *HUMAN*: o

• Automatic methods can be used to enhance existing resources or create domain-specific lexicons.



## Lexico-Syntactic Patterns

- Lexico-syntactic contexts often reveal the semantic class of a word.
- AutoSlog [Riloff 1993] is a pattern generator that was originally developed for event extraction tasks.
- Each pattern co-occurs with a NP in one of 3 syntactic positions: *subject, direct object, PP object.*

#### **Example Location Patterns**

<subject> was inhabited patrolling <direct object> lives in <PP object> the locality was inhabited... ...patrolling Zacamil neighborhood ...lives in Argentina

|                                     | Lexico-Syntactic r atterns                    |
|-------------------------------------|-----------------------------------------------|
| subject> passive-vp                 | <target> was bombed</target>                  |
| subject> active-vp                  | <perpetrator> bombed</perpetrator>            |
| subject> active-vp dobj             | <perpetrator> threw dynamite</perpetrator>    |
| subject> active-vp infinitive       | <perpetrator> tried to kill</perpetrator>     |
| subject> passive-vp infinitive      | <perpetrator> was hired to kill</perpetrator> |
| subject> auxiliary dobj             | <victim> was fatality</victim>                |
| active-vp <dobj></dobj>             | bombed <target></target>                      |
| nfinitive <dobj></dobj>             | to kill <victim></victim>                     |
| active-vp infinitive <dobj></dobj>  | tried to kill <victim></victim>               |
| passive-vp infinitive <dobj></dobj> | was hired to kill <victim></victim>           |
| subject auxiliary <dobj></dobj>     | fatality was <victim></victim>                |
| assive-vp prep <np></np>            | was killed by <perpetrator></perpetrator>     |
| ctive-vp prep <np></np>             | exploded in <target></target>                 |
| ifinitive prep <np></np>            | to kill with <weapon></weapon>                |
| oun prep <np></np>                  | assassination of <victim></victim>            |
|                                     |                                               |

а

а

S

a

in

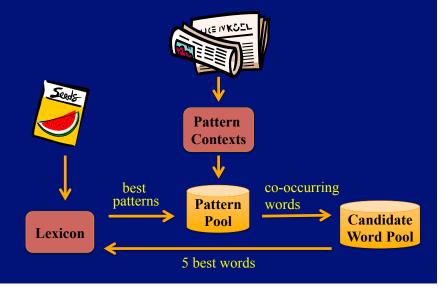
BASILISK = <u>B</u>ootstrapping <u>A</u>pproach to <u>SemantIc Lexicon Induction using</u> <u>Semantic K</u>nowledge



# Key Ideas behind Basilisk

- Collective evidence over extraction patterns.
- Learning multiple categories simultaneously.

# **Basilisk Bootstrapping Algorithm**



## Scoring Patterns

Every extraction pattern is scored and the best patterns are put into a *Pattern Pool*.

The scoring function is:

$$RlogF (pattern_i) = \frac{F_i}{N_i} * log_2 (F_i)$$

#### where:

 $F_i$  is the number of category members extracted by pattern<sub>i</sub>  $N_i$  is the total number of nouns extracted by pattern<sub>i</sub>

## The Pattern Pool

• Initially, we used a Pattern Pool of size 20, but the pool became stagnant over time.

<u>Solution:</u> begin with a pattern pool of size 20, but increase the pool size by 1 after each iteration to infuse the pool with new candidates.

• All head nouns that co-occur with patterns in the Pattern Pool are put into the Candidate Word Pool.

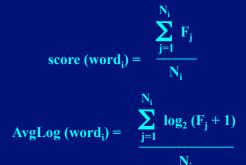
# Scoring Words based on Collective Evidence

- 1. Given a word, collect all of its pattern contexts.
- 2. Compute the average # of distinct class members per pattern. (Actually, average over logarithms.)

*INTUITION: a word receives a high score if it occurs in contexts that also consistently co-occur with known semantic class members.* 

## Selecting Words for the Lexicon

 $score(word_i) =$  the average number of category members that cooccur with the pattern contexts containing the candidate word.



where:

 $F_j$  is the # of distinct category members that co-occur with pattern<sub>j</sub>  $N_i$  is the total number of patterns that co-occur with word<sub>i</sub>

## **Experimental Design**

- Used the MUC-4 corpus: 1700 texts related to terrorism.
- Experiments on 6 semantic categories: *building, event, human, location, time, weapon.*
- 10 seed words for each category.
- 1000 words automatically generated for each category.
- Basilisk was compared with our previous algorithm (*metabootstrapping*).

## **Baseline Results**

| Head Nouns (8460 words) |      |         |  |  |
|-------------------------|------|---------|--|--|
| building                | 188  | ( 2.2%) |  |  |
| event                   | 501  | ( 5.9%) |  |  |
| human                   | 1856 | (21.9%) |  |  |
| location                | 1018 | (12.0%) |  |  |
| time                    | 112  | (1.3%)  |  |  |
| weapon                  | 147  | (1.7%)  |  |  |
| (other)                 | 4638 | (54.8%) |  |  |

## Seed Words

#### We used the 10 most frequent words for each category.

**Building:** embassy, office, headquarters, church, offices, house, home, residence, hospital, airport

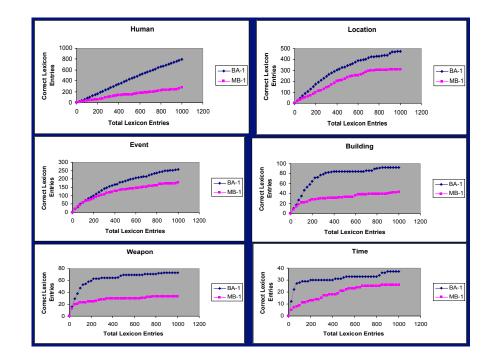
**Event:** attack, actions, war, meeting, elections, murder, attacks, action, struggle, agreement

Human: people, guerrillas, members, troops, Cristiani, rebels, president, terrorists, soldiers, leaders

Location: country, El Salvador, Salvador, United States, area, Colombia, city, countries, department, Nicaragua

Time: time, years, days, November, hours, night, morning, week, year, day

Weapon: weapons, bomb, bombs, explosives, arms, missles, dynamite, rifles, materiel, bullets



## Semantic Learning Case Study

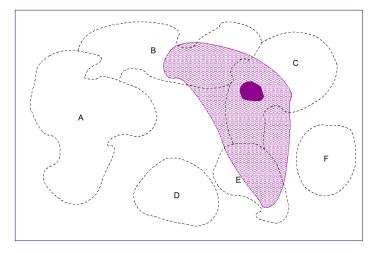
- Seed Words: 10 common disease names
- Of the top 200 words hypothesized to be diseases: 89 were already in the UMLS metathesaurus (32,000 names of diseases and organisms), but 111 were not! Including:

| adenomatosis     | flu                    | h5n1  |
|------------------|------------------------|-------|
| tularaemia       | kawasaki               | h7n3  |
| tularamia        | mad-cow-disease        | ev71  |
| diarrhoea        | smut                   | yf    |
| diphtheriae      | pertussis              | jyf   |
| enterovirus-71   | pleuro-pneumonia       | nvcjd |
| fibropapillomas  | polioencephalomyelitis | pepmv |
| gastroeneteritis | poliovirus             | wsmv  |

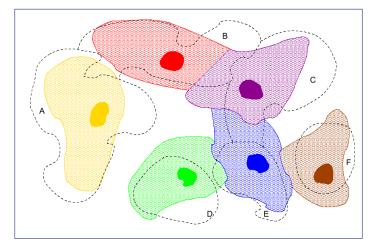
### Learning Multiple Categories Simultaneously

- We hypothesized that confusion errors can be reduced by learning multiple semantic categories simultaneously.
- "One Sense per Domain" assumption.
- Knowledge about competing categories can constrain and steer the bootstrapping process.

## Bootstrapping a Single Category

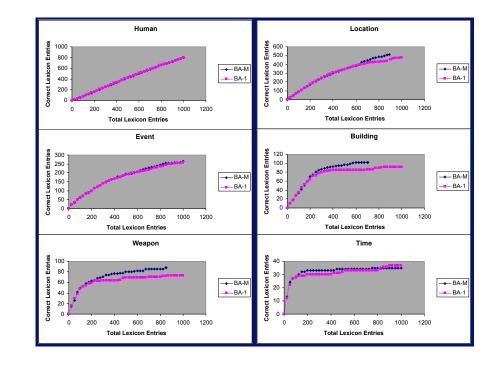


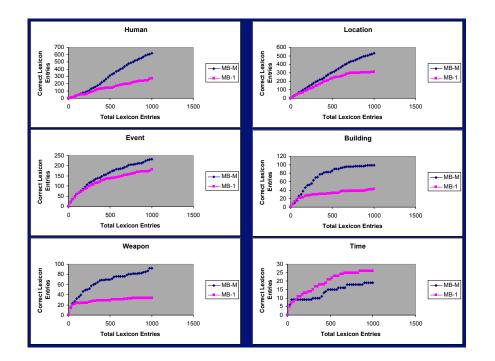
## **Bootstrapping Multiple Categories**



# Simple Conflict Resolution

- A word cannot be assigned to category X if it has already been assigned to category Y.
- If a word is hypothesized for both category X and category Y at the same time, choose the category that receives the highest score.



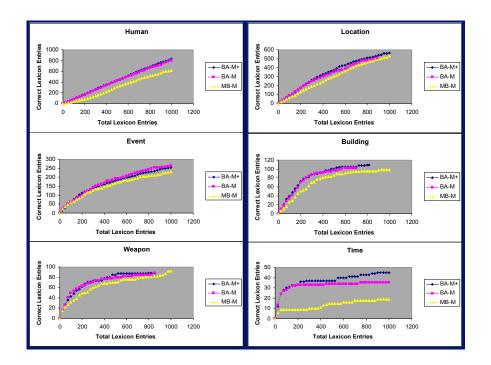


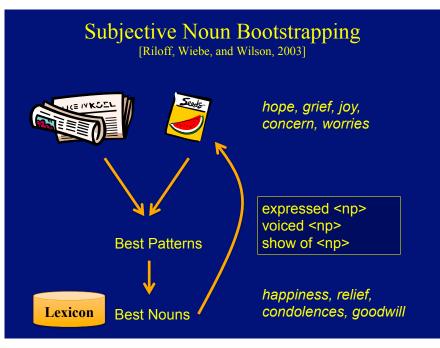
# A Smarter Scoring Function

A more proactive approach: incorporate knowledge about other categories directly into the scoring function.

#### New scoring function:

diff 
$$(w_i, c_a) = AvgLog(w_i, c_a) - \max_{b \neq a} (AvgLog(w_i, c_b))$$





## Examples of Learned Subjective Nouns

tyranny smokescreen apologist barbarian belligerence condemnation sanctimonious exaggeration repudiation insinuation antagonism atrocities denunciation exploitation humiliation ill-treatment sympathy scum bully devil liar pariah venom diatribe mockery anguish fallacies evil genius goodwill injustice innuendo revenge rogue

# Role-Identifying Note Bootstrapping Chillips and Riloff; 2007 Performance Performance

## Learned Role-Identifying Nouns

#### Terrorism Perpetrators:

assailants, attackers, cell, culprits, extremists, hitmen, kidnappers, militiamen, MRTA, narco-terrorists, sniper

#### **Outbreak Victims:**

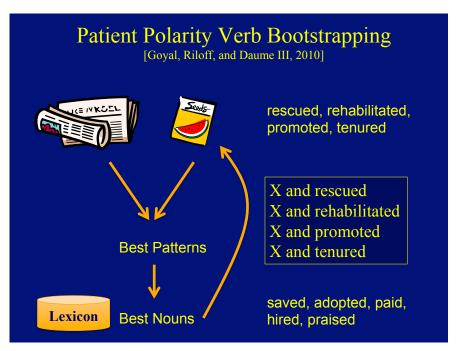
bovines, crow, dead, eagles, fatality, pigs, swine, teenagers, toddlers, victims

## Patient Polarity Verbs

• Many everyday actions are good or bad for the entity that is acted upon (the *patient*).

Bad: *eaten, arrested, captured, hospitalized* Good: *fed, adopted, paid, rescued* 

- *Hypothesis:* conjoined verbs often share the same polarity.
  - abducted and killed; indicted and arrested
  - + rescued and rehabilitated; promoted and tenured



## Examples of Learned PPVs

Some examples of patient polarity verbs learned by Basilisk using conjunction pattern contexts:

- censor, chase, fire, orphan, paralyze, scare, sue
- + accommodate, harbor, nurse, obey, respect, value

## Conclusions

- Using collective evidence from a set of extraction patterns improves the accuracy of semantic lexicon induction.
- Learning multiple semantic categories at the same time can constrain bootstrapping and improve performance.
- Manual review is still necessary to use the learned dictionaries.
- Performance for some categories is beginning to approach levels for which manual review may not be necessary.