CS 6958
USIMM
PROJECT PHASE

March 5, 2014
--num-TMs
--num-TM$s

- L2 requirements depends on how many accesses pass the L1

- Affected by:
 - Number of TMs connected to L2
 - L1 hit rate of each TM
 - L1 access rate
 - Affected by num threads and num banks
Full System

- DRAM requirements similarly affected by:
 - Number of L2s
 - L2 access rate
 - L2 hit rate

- Aside from full design-space exploration, what can we do?
 - Pick a good TM
 - Then pick a good L2/num TMs
 - Then pick a good num L2s
 - Tweak...
Full System

- **Number of TMs:**
 - `--num-TMs * --num-l2s`

- **Number of threads:**
 - `number of TMs * --num-thread-procs`
Attempts to parallelize the simulator itself

- Only works on > 1 TM

TMs must synchronize on every cycle, and mutex every L2 access

- Parallel scaling is not too great
- Recommend 8 threads at most
Utah Simulated Memory Module

- Does two things:
 - Slows the simulator down a lot
 - Makes the simulator more accurate (a lot)

- Overhead is proportional to #cycles
 - More threads = fewer cycles, overhead becomes reasonable
Non-intuitive items:
- Total reads/writes serviced = total cache lines transferred
 - != total loads/stores (coalescing)
- Page Hit Rate = row buffer hit rate
- Avg. column reads per ACT = How many reads to an open row before closing it
- Single column reads = how many times was a row opened for just 1 read (worst case)
USIMM Output

- Energy/Power reported in two places:
 - Energy: along with all other energy numbers
 - Power: after per-channel stats

- Why does USIMM draw power even with no LOAD/STORE?
 - DRAM refresh
 - Energy consumed is a function of activity + running time (background energy)
USIMM Default Config

- 16 channels
- 16 banks
 - = 256 total row buffers
- 8KB rows
- 64B lines
- 2x TRaX clock (2GHz)
 - = 512GB/s peak
- Max queue length = 80 (per channel)
Address Mapping

- Two policies implemented
 - See configs/usimm_configs/gddr5_8ch.cfg
 - ADDRESS_MAPPING <0 or 1>

<table>
<thead>
<tr>
<th>Policy</th>
<th>Most significant bit</th>
<th>...</th>
<th>...</th>
<th>Least significant bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Row</td>
<td>Column</td>
<td>Bank</td>
<td>Channel</td>
</tr>
<tr>
<td>1</td>
<td>Row</td>
<td>Bank</td>
<td>Channel</td>
<td>Column</td>
</tr>
</tbody>
</table>

- Neither is inherently better
 - What matters is compatibility with access patterns
Final Projects

1. **Proposal**
 - Short description/proposal document
 - 5 minute introduction presentation

2. **Weekly short status report**
 - What have you achieved this week?
 - Where are you stuck, how can we help?

3. **Midpoint report**
 - 5 minute progress/future direction presentation

4. **Final report**
 - Project analysis and documentation
 - 10 minute final presentation
Final Projects

- **Must be substantial**
 - We will approve your proposal document

- **Must be interesting/useful**
 - Something we haven’t already done

- **Can focus on HW/SW or either**
 - HW focus must analyze on interesting SW benchmark
 - SW focus must analyze HW requirements
Pitch 1 – Visual Analysis Suite
Visual Analysis
Visual Analysis

- Perform a full high quality rendering, but display something else about each pixel
 - Cache hit rates
 - Bandwidth consumption
 - Stack traffic
 - Row buffer hit rate
 - Resource stalls/data stalls

- Composites of 2 or more of the above may be very revealing

- Draw per-box heat map instead of per-pixel?
Visual Analysis
Visual Analysis
Visual Analysis
TRaX has special “loadl1” and “loadl2” instructions
- Returns whether or not certain address is cached

As a programmer, use this to re-order computation
- Or alter the algorithm altogether
Cache Aware (i.e. Path Tracing)

- Direction of any given indirect ray not too important
- Favor rays traveling in a “cached” direction
- Quantize and limit bias
- Determine good restart heuristic

First try

Start over with new ray

not cached
cached
Pitch 3 – Cache Upgrade

- Associativity
- Victim caches
- RT-aware caches
 - Box cache
 - Triangle cache (odd line size)
 - Material cache (odd line size, low pressure)
 - Prefetching
Pitch 4 - DRAM

- **Row buffer friendly data layout**
 - and/or row buffer friendly access patterns
 - i.e. rearrange BVH/traversal order

- **Address mapping policies**

- **Memory controller algorithms**
 - RT-aware scheduling
DRAM Pitch (i.e. access patterns)

- If ray leaves current "row buffer region", pause processing until later
Pitch 5 – Cache Coherence

- Currently, simtrax models write-only or read-only
 - Caches are write-around
 - read-after-write behaves correctly, but reports fake performance

- Add correct modeling
 - Caches need to signal each other to invalidate lines
 - Could add new instructions:
 - Read-around
 - Write-through
 - Write-around
 - …
Final Projects

- Keep in mind you have a simulator
 - Way more info available than a CPU program

- You can do “anything” you want
 - Add new instructions
 - Add new HW units
 - Add new memories, change memory controller
 - Instrument new stats gathering