CS 6958
LECTURE 12
WRAP-UP CACHES
Creative
Creative
Ray Coherence

- Processing coherent rays simultaneously results in data locality
 - Lots of research involving collecting coherent rays
 - More on this later
Many-Core Shared Caches

All processed simultaneously

Suppose each of these nodes map to the same cache line (but different tag)
Line Size

- How big should lines be?
 - 1 word (4 bytes)
 - equivalent to larger RF
 - 64B
 - Typical (but seems pretty small)
 - Why not 512B, 1KB?
Line Size

- Number of lines = cache size / line size
 - What if only 1 line?
 - Data access usually only contiguous to certain extent (8, 16 words at a time?)

- Especially true for tree traversal
 - More lines → lower probability of conflict
Overfill / Underfill

- **Overfill**
 - Transferring too much data from L1, L2, DRAM
 - Locality only goes so far
 - Wastes a lot of energy, occupies DRAM channels

- **Underfill**
 - Transferring not enough data from L2, DRAM
 - Doesn’t amortize expensive activation overheads

- **Getting the right balance is tricky**
 - Very rarely do we transfer exactly what we need
LOAD Stalls

- **Data dependence stalls**
 - Variable latency (1 – ??)
 - With `--disable-usimm`, latency is function of hit rate

<table>
<thead>
<tr>
<th>(32 threads)</th>
<th>4KB</th>
<th>32KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread issue rate</td>
<td>53%</td>
<td>69%</td>
</tr>
<tr>
<td>Data Stalls (LOAD)</td>
<td>76M</td>
<td>18M</td>
</tr>
</tbody>
</table>

- **Resource conflicts**
 - Two threads trying to read same bank

<table>
<thead>
<tr>
<th>(32 threads)</th>
<th>1 bank</th>
<th>8 banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread issue rate</td>
<td>30%</td>
<td>69%</td>
</tr>
<tr>
<td>Resource conflicts (LOAD)</td>
<td>268M</td>
<td>1M</td>
</tr>
</tbody>
</table>
Cache Areas

- Function of capacity and num banks
Caches (config-file)

<table>
<thead>
<tr>
<th>L1</th>
<th>1</th>
<th>8192</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>latency</td>
<td>capacity (words)</td>
<td>banks</td>
<td>log_2(linesize) (words)</td>
</tr>
</tbody>
</table>

Example is 32KB with 64B line size
Cache Specifications

- samples/configs/dcacheparams.txt
 - All reasonable cache capacity/numbanks/linesize configurations
 - Some combinations not feasible and don’t exist
 - Specified in bytes, not words!

- Area, energy estimates using Cacti
L1 Hit Rates

- Diminishing returns?
 - Not exactly
Hit Rates

- What’s the difference between 98% and 99%
Hit Rates

- What’s the difference between 98% and 99%
 - How many fewer reads make it past the cache?
 - $\frac{1}{2}$

- 0% \rightarrow 10% $==$ 10% better
- 70% \rightarrow 80% $==$ 33% better
Hit Rates (L1 + L2)

- What is the difference between:
 - L1: 98% → 99%
 - L1: 98% + L2: 50%
 - Vs.
Hit Rates (L1 + L2)

- What is the difference between:
 - L1: 98% → 99%
 - Vs.
 - L1: 98% + L2: 50%

- Which is easier to achieve?
 - In terms of:
 - design
 - area
 - energy
Cache Statistics

System-wide L1 stats (sum of all TMs):

- L1 accesses: 14232064
- L1 hits: 13630310
- L1 misses: 601754
- L1 bank conflicts: 761313
- L1 stores: 49152
- L1 hit rate: 0.957718
- Hit under miss: 357529

Doesn’t include hit under miss (Hit + H.U.M. rate = 98.3%)
L1 \rightarrow L2 Interaction

- For L2 to catch extra misses, they must contain different lines
- L2 much larger: address \rightarrow line mapping changes

L2

L1 line 0, tag 0
L2 line 0 tag 0

L1 line 0, tag 1
L2 line 4 tag 0
If we must evict green line from L1, it is not completely thrown away
L1 \(\rightarrow\) L2 Interaction

- Extra line (green) is still saved if needed later
- Cache hierarchy almost like extra associativity
L1 \rightarrow L2 Interaction

- L2 usually shared by multiple L1s
 - Non-exclusive
 - Lines contained in L2 *may* also be contained in L1

L2

L1_0

L1_1
L1 \rightarrow L2 Interaction

- Shared cache interaction gets more intricate.
L1 \rightarrow L2 Interaction

- L1_1 may benefit from someone else's fetch
If they disagree, L1_0 keeps its own copy
L1 → L2 Interaction

- L2 lines replicated in at least one L1
- L1 lines not necessarily in L2