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ABSTRACT
A synthetic noise function is a key component of most com-
puter graphics rendering systems. This pseudo-random noise
function is used to create a wide variety of natural looking
textures that are applied to objects in the scene. To be
useful, the generated noise should be repeatable while ex-
hibiting no discernible periodicity, anisotropy, or aliasing.
However, noise with these qualities is computationally ex-
pensive and results in a significant fraction of the run time
for scenes with rich visual complexity. We propose modifi-
cations to the standard algorithm for computing synthetic
noise that improve the visual quality of the noise, and a par-
allel hardware implementation of this improved noise func-
tion that allows the use of reduced precision arithmetic dur-
ing the noise computation. The result is a special-purpose
function unit for producing synthetic noise that computes
high-quality noise values approximately two orders of mag-
nitude faster than software techniques. The circuit, using a
commercial CMOS cell library in a 65nm process, would run
at 1GHz and consume 325µm× 325µm of chip area.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—Al-
gorithms implemented in hardware; I.3.7 [Three-Dimensional
Graphics and Realism]: Color, shading, shadowing, and
texture

General Terms
Algorithms, Design

1. INTRODUCTION
Procedural methods have many advantages in computer

graphics. By tweaking only a handful of parameters, a digi-
tal artist can quickly populate a scene with massive amounts
of rich detail. Each object or texture generated this way may
have a unique appearance without any obvious repetition
(e.g., tiling a hand-drawn texture.) Moreover, procedural
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techniques trade computation for memory. This is impor-
tant since as process technology scales, compute resources
will increasingly outstrip memory speeds. For texturing sur-
faces, the memory reduction can be two-fold: first there
is the simple reduction in texture memory itself. Second,
3D or “solid” procedural textures can eliminate the need for
explicit texture coordinates to be stored with the models.
However, in order to avoid uniformity and produce visual
richness, a simple, repeatable, pseudo-random function is
required. Noise functions meet this need.

Simply described, a noise function in computer graphics
is an RN → R mapping used to introduce irregularity into
an otherwise regular pattern. With the introduction of his
noise function, Perlin [?, ?] enumerated several ideal quali-
ties for such a function. Ideally, a noise function should have
(1) a narrow bandpass limit in the texture space, and (2) a
statistical character that is both stationary (translation in-
variant) and isotropic (rotation invariant). Peachey [?], in
his excellent overview of noise, added: (3) be a repeatable
pseudo-random function for a given input, (4) have a known
range of outputs, and (5) avoid exhibiting obvious periodic-
ity.

Noise has been used to simulate an incredible variety of
appearances. Published examples of noise-based procedural
shaders include cumulus clouds, hurricanes, clouds with cori-
olis effects, fire, water ripples, wavy water, sedimentary rock,
and moons with rayed craters [?], marble, oak wood, brick
walls, ceramic tiles, volumetric smoke, and lens flares [?].
(Figure ?? shows a simple example demonstrating some of
these.) Higher dimensional noise allows for time-varying an-
imations. Noise has even been used to compute velocity
fields to emulate the appearance of turbulent fluid flow [?].
High-end movie graphics also makes extensive use of noise:
rendered effects for “The Perfect Storm” were said to have
averaged approximately 200 noise evaluations per shading
sample [?]. Noise is ubiquitous in movie imagery and as a
result, Ken Perlin was awarded a Technical Academy Award
for Perlin Noise in 1997.

The noise hardware proposed in this paper is being ex-
plored as part of a special-purpose hardware architecture
called TRaX [?], a multi-threaded many-core processor de-
signed for ray tracing [?, ?]. In this architecture many thread
processors share larger special-purpose functional units (such
as inv-sqrt, FP-mult, and noise) to increase performance and
to amortize hardware costs. That architecture is specifically
targeted at ray tracing, but our noise hardware could also
be used in any graphics system where high-quality noise is
used for shading calculations. Including noise hardware on



Figure 1: An example scene exhibiting noise-based proce-
dural textures. Perlin noise was used to generate the wood
grain pattern, the marble pattern, and the irregularities in
the bricks and to control the density of the volumetric smoke.
1.3 billion noise evaluations were computed to render this
image, averaging 552 per shading sample. 37.2% of the ren-
derer’s execution time was spent evaluating noise.

an existing commodity graphics chip (GPU), could greatly
increase performance for procedural texturing on those sys-
tems.

1.1 Noise in Graphics
One of the simplest possible noise functions for computer

graphics is value noise. Conceptually, this is produced by
randomly sampling a white noise function and then using
a reconstruction filter to interpolate between the samples.
Lewis’s sparse convolution noise [?] is one such example. For
efficiency, most implementations use samples taken along a
regular lattice and a simple interpolating reconstruction fil-
ter. Each lattice vertex within the range of the reconstruc-
tion filter’s support around the input point is mapped to a
sample value by hashing its coordinates, and then these val-
ues are interpolated at the input point to compute the noise
function’s value. A good hash function can provide a very
large volume of noise without obvious periodicity, while re-
ducing memory capacity requirements. Value noise is simple
to understand and can be efficient for low-order interpolants.
However, it tends to suffer from a blocky, anisotropic appear-
ance (Figure ??), even with a more expensive higher-order
interpolant.

To overcome this, Perlin [?, ?] introduced gradient noise.
Instead of using the product of the reconstruction filter with
a random scalar value at each sample point, the product of
the filter with a randomly oriented linear gradient is em-
ployed. The lattice coordinates are hashed to a unit vector,
and the dot product of this vector with the vector from the
lattice point to the input point is used to multiply the value

(a) Value noise

(b) Perlin’s gradient noise

Figure 2: Comparison of (a) value noise, with (b) Perlin’s
gradient noise. To the left is the the reconstruction filter
and an example of an oriented dipole, respectively. Gray
represents zero, white indicates positive, and black is used
for negative values. The grid overlay shows unit lengths in
texture space. Arrows indicate gradient directions.

from the filter. This effectively creates a set of overlapping,
randomly oriented dipole functions (“surflets” in Perlin’s ter-
minology). Though the vector operations increase the com-
putational complexity, the gradients eliminate much of the
blockiness and a narrower filter over fewer samples can be
used. (Figure ??)

In 2001, a more hardware-amenable noise function was de-
veloped by Perlin [?] that introduced a variant of gradient
noise known as simplex noise. Traditional implementations
of Perlin noise interleaved the sampling and reconstruction
steps via interpolation. With simplex noise, Perlin made the
noise more isotropic by substituting a radial reconstruction
filter for the previous separable one. The second change was
to switch from a cubic lattice to a simplex lattice, thereby
reducing the number of sample points evaluated during the
reconstruction. The simplicial grid is also far more efficient
for higher-dimensional noise. Finally, he introduced the idea
of only using -1, 0 and 1 as components of the gradients in
order to eliminate the multiplications in the dot products.
However, this reduction in samples and simplification of the
gradient calculations gives simplex noise a noticeably differ-
ent visual quality.

In 2002, Perlin [?] returned to a more traditional noise
function (with cubic grid and separable filter) with small ad-
justments to the interpolant and a clarification of simplified
gradients from simplex noise. First, he switched to a higher-
order polynomial for the interpolant in order to improve the
appearance when Perlin noise is used for displacement map-
ping. Second, by changing from a table of random unit vec-
tors to a set of vectors based on the midpoints of the edges
of a cube, he further reduced the effective number of gradi-
ents to twelve. The regular distribution also eliminates the
problem of clumping. An alternate solution would have been



to apply a relaxation algorithm to the randomly generated
unit vectors as a preprocess [?].

Cook and DeRose [?] noted that Perlin’s noise still had
several flaws and introduced an alternative, wavelet noise,
to overcome these issues. The essence of their algorithm is
to initially create an image of random noise, down-sample
to half size, up-sample back to full size, and then subtract
this result from the original. To evaluate the noise at a
point, they filter the image with a uniform quadratic B-
spline, in a process similar to evaluating value noise. The
initial construction of wavelet noise produces tighter band
limits in its frequency distribution, both at the lower and at
the upper limits. The result is orthogonal bands that allow
for better spectral control. They also note the Fourier slice
theorem is responsible for low frequencies “leaking” in when
evaluating 2D slices embedded in a higher 3D noise volume.
They solve this problem with a modification to the filtering
step based on projection along the surface normal.

1.2 Noise in Hardware
There has been some work published on hardware noise

implementations [?, ?, ?]. This work does not actually pro-
pose special hardware for computing noise, instead it de-
scribes details to implement Perlin style noise using GPUs
by mapping the lookup tables to texture memory. They are
software adaptations of a noise algorithm to run on GPU
hardware. While this approach is useful, it is quite different
from our approach to hardware noise.

Our noise implementation is an actual parallel hardware
implementation of noise as a custom circuit for use as a
co-processor or as a functional unit to be included in future
designs. While this approach does not leverage existing high
performance architectures like GPUs, it does have the poten-
tial to be used in GPUs to further increase the performance
and quality of these kinds of computations.

As described in Section ?? Perlin designed his simplex
noise to be more amenable to hardware acceleration by us-
ing a set of twelve fixed vectors with unit components to
reduce the computation needed for the dot products. While
this does reduce the required computation somewhat, it also
creates some additional artifacts in the image that are quite
apparent and which we wanted to avoid in our noise algo-
rithm.

2. IMPROVED GRADIENT NOISE
In previous work on software noise algorithms [?], we

noted that the wavelet noise algorithm, while improving
on the spectral characteristics, displayed marked anisotropy.
To be efficient, wavelet noise also requires significantly more
memory to store the complete pre-processed noise volume,
whereas Perlin noise relies on a simple hashing scheme to
generate the volume. We introduced a set of modifications
to the Perlin noise algorithm [?] to improve the spectral
characteristics to match the benefits of wavelet noise.

The first change is to the hash function. Perlin noise nor-
mally uses a hash function, Hi,jk = P [P [P [i] + j] + k] to
hash coordinate i, j, k on the integer lattice to an index into
the gradients. Here, P is a table of integers 0 . . . (N−1) ran-
domly permuted and the table lookups are modulo N . This
produces striations in the Fourier transform of the noise due
to periodicity (Figure ??): the same sequence of gradients
will be used along k, simply shifted depending on i and j.
To solve this, we changed the hash function to use a separate

(a) Perlin noise (b) XOR hash (c) Radial filter

Figure 3: Detail of images and associated Fourier transforms
of 2D versions of (a) standard Perlin noise, (b) Perlin noise
using our XOR hash function, and (c) noise with our new
broader radial filter and coarser grid sampling.

permutation table for each dimension and then exclusive-or
the values from each: Hi,j,k = Px[i] ⊕ Py[j] ⊕ Pz[k] (Fig-
ure ??). This has the added benefit of eliminating dependent
lookups.

The second change is to the filter kernel. By multiply-
ing the gradients (dot products) with a broader radial filter,
s(x) = 4(1 − x2/4)5 − 3(1 − x2/4)4, where x is the magni-
tude of the vector from the texture coordinate to the lattice
sample point, we achieve tighter bandlimits on the noise.
This radial filter, together with a larger table of gradients
additionally makes the noise more isotropic. The wider do-
main, x ∈ [−2, 2], does carry additional computational cost
by requiring a 4×4×4 stencil for the evaluations. Sampling
the grid at only half the frequency (at the even numbered
lattice coordinates) reduces this back to the 2× 2× 2 evalu-
ations of regular Perlin noise. While slightly detrimental to
the direct visual appearance, this more efficient but coarser
sampling retains most of the characteristic spectral bene-
fits (Figure ??). For actual use in most textures, they are
largely indistinguishable.

A third improvement is to return to the use of a true
table of gradients. Perlin’s reduced set of gradients [?, ?] is
fast and has the advantage of eliminating clumping in the
distribution of the gradients, but can still lead to a strong
statistical bias when taking axis-aligned planar slices of a
3D noise volume. Even without this bias, these gradient
vectors are prone to producing artifacts in the form of runs
at 45◦ angles. Instead, we use a larger table with Perlin’s
relaxation idea [?] to solve the clumping problem. In our
implementation, each vector in the table is treated as a point
charge confined to the surface of a unit sphere [?] which
moves about until it reaches equilibrium. This preprocess
produces a set of vectors which evenly cover the sphere.

We have used this modified gradient noise algorithm as
the basis for our hardware noise implementation. We imple-
mented the new hashing scheme, the new radial polynomial
with the coarser grid evaluation, and generated the vectors
in the gradient tables with the relaxation technique.

3. HARDWARE GRADIENT NOISE
As a data point, one straightforward implementation of
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Figure 4: High-level diagram of our noise implementation. Thick lines indicate vector values. All values are signed (two’s
complement form with an implicit additional high bit) unless noted as unsigned. The left side illustrates the computation of
the polynomials on the squared magnitudes of the vector offsets. The right side shows hashing the integer lattice coordinates
to lookup the gradient vectors for the dot products before combining these with the polynomials to produce the final value.

Perlin noise that we have measured requires 120 floating
point operations to compute one noise value. Our higher
quality noise requires as many as 172 operations in soft-
ware, though many of these operations are independent of
each other. Clearly if we can parallelize this process we can
achieve a much faster noise implementation. An overview of
the parallel hardware implementation of our improved noise
algorithm can be seen in Figure ??. As mentioned above,
our improved noise uses a gradient table to provide better
results than either simplex noise or value noise. This im-
provement in quality comes at a cost of increased circuit size
(to hold the table and to perform the full dot products). We
believe it is a good trade off considering the improvement in
quality. Additionally, we use reduced precision fixed point
arithmetic to save area, energy and delay. We also achieved
additional savings by reducing the sizes of the gradient and
hash tables. As can be seen from Figures ?? and ??, our
fixed point implementation, while distinguishable as being a
different image, does not have a noticeable difference in qual-
ity from the standard floating point implementation used in
software.

For our circuits we used standard cells from Artisan tar-
geted to a 65nm CMOS process. We used Synopsys Design
Compiler as a synthesis front end and Cadence SOC En-
counter for back-end place and route. For table comparisons
between standard cells and ROMs we used Artisan via-ROM
generators for the same 65nm CMOS process.

The typical application for noise is generating images with
an 8-bit representation per color channel. This allows us
to use much lower precision in our circuits than would be
used in a traditional software implementation of noise. Even

when the software version, or the GPU version, of noise does
the full computation in 32-bit floating point most of the pre-
cision is thrown out in the end. We leverage this to use 8-bit
fixed point computations in our noise circuits which results
in tremendous savings in area, power, and latency with no
discernible visual artifacts. While multiplication operations
do lose some precision due to truncation of the lower bits,
the deepest chain of arithmetic operations contains just five
multiplies.

3.1 Lookup Tables
There are a number of lookup tables used in our im-

proved noise algorithm (permutation tables and gradient ta-
bles) and we explored a few options for implementing them.
We first used the ROM generator, but the results required
a fairly large area. We found that by implementing the
lookups as case statements in Verilog and synthesizing to
standard cells we were able to decrease the area needed for
the lookup tables by a factor of 3.3. The latency through the
ROM was also worse and forced us to latch the value at the
output instead of allowing us to perform register retiming
through the lookup tables. We believe this is because the
lookup tables we are using are at the smallest possible size
for the ROM generator, and the amortized ROM overhead
is relatively large.

We also analyzed the tradeoff between a full 256 entry gra-
dient table described in Section ?? and a much smaller 64
entry gradient table which we believe is the smallest size that
generates results that are visually indistinguishable from the
larger table sizes. Because we replicate this table eight times
to allow for parallel lookups, the area savings are consider-



Figure 5: Example scene from Figure ?? rendered with a
software implementation of our modified noise algorithm.
All noise evaluations were performed with 8 fractional bits
and a 64-entry gradient table. While not identical, this
shows that the modified algorithm with reduced precision
can be a viable alternative to floating point Perlin noise.

able. We opted to shrink the table rather than pipeline the
lookups in the table for simplicity and parallelism. In addi-
tion, this reduction in the size of the gradient tables allowed
us to shrink the bit width of the 256 entry hash tables as
we only need six bits to find the gradient. In each case, the
gradient values used in our tables were generated using the
point repulsion technique described in Section ??.

3.2 Pipelining
Our initial design was entirely combinational where it was

assumed that a full computation of noise would be performed
in a single cycle. We compared that design to a pipelined
design with up to four stages and found that we could meet
our goal of 1GHz frequency with four pipeline stages where
the non-pipelined version would only reach 344MHz. The
pipelined version was generated by first synthesizing the en-
tire combinational circuit to meet the combinational timing
requirement. Design Compiler was then run on the synthe-
sized circuit to perform register retiming and distribute the
registers throughout the circuit resulting in a pipelined im-
plementation. Register retiming can create circuits of very
different sizes depending on where the registers are placed
in the final retimed version.

To explore the design space we synthesized a few different
pipeline depths as part of our design process. The results
of these synthesis runs are detailed in Table ??. While we
were also able to achieve a 1GHz clock frequency with a
three stage pipeline, the size of the three stage design was
larger than the four stage design because a larger combina-
tional circuit is needed to meet the timing requirements. We
therefore chose the smaller design since throughput is more
important than latency for this application.

Table 1: Cell area and performance numbers are from syn-
thesis before place and route.

Pipeline stages Clock Cell Area (µm2)
Comb Seq Total

0 (combinational) 344MHz 60,350 0 60,350
1 (not retimed) 337MHz 57,052 2,470 59,522
3 (retimed) 1GHz 76,256 11,980 88,236
4 (retimed) 1GHz 58,090 11,470 69,560

3.3 Physical Implementation
Figure ?? shows the computational flow of information for

a single noise calculation. A three-space point (vector) is in-
put and the result is a single noise value which is used in the
shading computations. From this diagram the parallelism
in the algorithm is apparent, and would be difficult to ex-
ploit in software. The thick lines in the diagram are vectors
(typically 3 elements of 8 bits each) and the thin lines are
single 8-bit values. The boxes labeled Hash and Grad are
the hash lookups and the gradient tables described in Sec-
tion ??. Section ?? also describes the polynomial operation
(radial filter) performed by the Poly boxes.

The arithmetic implemented in the magnitude, dot prod-
uct, and polynomial computations, as well as the multipliers
and adders, is all fixed point. The range of values for the
fractional inputs is in the range [0, 1] and only the most sig-
nificant bits really matter, which is why fixed point is suffi-
cient and beneficial to our design. Our design retains all the
bits needed to encode the exponent in a floating point num-
ber and also results in smaller circuits because of the fixed
point representation. The arithmetic circuits were described
with behavioral verilog and synthesized with Synopsis.

While this design was not fabricated, the final circuit
after synthesis and place and route can be seen in Fig-
ure ??. The size of this final layout is 105kµm2 (325µm ×
325µm). For comparison, and also in the context of the
TRaX processor, we produced other more well-known cir-
cuits using the same standard cells and the same 65nm tech-
nology. A single-precision floating-point 3-element dot prod-
uct takes an area of 111kµm2. A double-precision floating-
point multiplier consumes 73kµm2, while a single-precision
floating-point ALU (performing add, subtract or multiply)
uses 34kµm2 in this technology.

Our circuit is smaller than a single-precision dot product,
despite containing eight dot product operations because we
use lower precision arithmetic in our circuit. While this
reduced precision is not appropriate for every potential ap-
plication of noise, we believe it is sufficient for our intended
application of shading in graphics. It would also map well to
any other application that ends up truncating the precision
when using the results of the noise.

4. CONCLUSION
Our improved noise algorithm results in high quality noise

that avoids the downfalls of periodicity, anisotropy, and alias-
ing. This functional unit performs this operation quickly
and requires only a relatively small die area. We reached our
target of a 1 GHz clock frequency with a four stage pipelined
design which produces one noise value per clock once the
pipeline is full. This can be compared to a straightforward
software implementation of Perlin noise which requires 120
floating point operations and peaks at 16.7M evaluations



Figure 6: Placed and routed circuit implementing our im-
proved noise function as a four-stage pipeline (105kµm2).
This image is a screen capture from Cadence SOC Encounter
and shows only metal routing layers.

per second on a single core of 2.8GHz Core 2 Duo. Our final
design uses three 256 entry hash tables where, to avoid ad-
ditional adders, each table entry encodes the hash value for
the input, and for the input + 1 (see Figure ??). We also
use eight copies of a 64 entry gradient table, where each
gradient is a three element vector of fixed point values.

As graphics pipelines demand more and more memory
bandwidth we believe that providing a method for high qual-
ity textures through a hardware accelerated noise function
provides a good trade-off. Much of the bandwidth of high-
performance graphics chips is devoted to image-based (look-
up) texturing. Procedural textures using noise offer an al-
ternative that trades memory bandwidth for computation.
The scene in Figure ?? is an example that uses an average of
552 calls to the noise function per shading sample. 37.2% of
the total execution time for rendering the image was spent in
the evaluation of noise for various aspects of the image. The
textures on all of the surfaces and the smoke use noise to im-
prove visual quality. The use of image-based textures would
require far more memory bandwidth than our approach.

Admittedly, many applications would see more modest
improvements in performance than the specific scene used
here which is designed to demonstrate heavy use of noise-
based textures. However, any time noise is used there would
be a speedup using our hardware over a software implemen-
tation. At least one place where this could encourage vi-
sually complex images at a reduced memory bandwidth re-
quirement would be video games. Games typically use very
large image textures to avoid the appearance of repetition.
While we do not have specific projections of memory band-
width savings, it is well known that the large image tex-
tures are a significant fraction of the memory bandwidth in
video games. Our design could increase the performance of
applications that use noise by as much as 50% and would
be a good step toward high quality procedural texture gen-

eration and could become a viable real-time alternative to
image-based texturing.
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