Lecture 13: Cache, TLB, VM

» Today: large caches, virtual memory, TLB
(Sections 2.4, B.4, B.5)

Shared Vs. Private Caches in Multi-Core

» Advantages of a shared cache:
= Space is dynamically allocated among cores
= No waste of space because of replication
= Potentially faster cache coherence (and easier to
locate data on a miss)

» Advantages of a private cache:
= small L2 - faster access time
= private bus to L2 - less contention

Shared NUCA Cache

__ A single tile composed

| 11 11 11

| 11 11 11 |

i| CoreO |ii| Corel |ii| Core2 |ii|l Core3 | of a core, Ll_ caches, and

: | B D ! a bank (slice) of the

(DS | IS |1 DS | IS |ii[DS | IS |ii[DS | IS |i

| |

| 12| ! 12s ;! 12| ! 12$ |

e I = I = I = I

ittt N ittt el N ittt el N ittt el 5

| 11 11 11 |

i| Coked |ii| Coke5 |ii|] Cofe6 |ii| Coke7 |i

! P P P ! The cache controller

Ll L figfta g i L2 p Ll fiif L2 L2 |i forwards address requests

i DS | IS |1 i[DS QR IS |ii/ DS IS |iiDS] IS i tothe appropriate L2 bank

i 1281 1281 1281 12 S ! and handles Foherence

] SN NN [y S SN] S SN] S | operations
Memory Controller for off-chip access

UCA and NUCA

 The small-sized caches so far have all been uniform cache
access: the latency for any access is a constant, no matter
where data is found

* For a large multi-megabyte cache, it is expensive to limit
access time by the worst case delay: hence, non-uniform
cache architecture

Large NUCA

Issues to be addressed for
Non-Uniform Cache Access:

* Mapping

 Migration

e Search

* Replication

Virtual Memory

* Processes deal with virtual memory — they have the
llusion that a very large address space Is available to
them

* There is only a limited amount of physical memory that is
shared by all processes — a process places part of its
virtual memory in this physical memory and the rest is
stored on disk

» Thanks to locality, disk access is likely to be uncommon

- The hardware ensures that one process cannot access

the memory of a different process :

Address Translation

 The virtual and physical memory are broken up into pages

8KB page size

——

virtual page page offset
number

Translated to phys
page number 1

Physical address

PZONT . SE

physical page page offset

number :
Physical memory
7

Memory Hierarchy Properties

* A virtual memory page can be placed anywhere in physical
memory (fully-associative)

* Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

A page table (indexed by virtual page number) is used for
translating virtual to physical page number

* The memory-disk hierarchy can be either inclusive or
exclusive and the write policy is writeback

TLB

* Since the number of pages is very high, the page table
capacity is too large to fit on chip

* A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

« ATLB miss requires us to access the page table, which
may not even be found in the cache — two expensive
memory look-ups to access one word of data!

* A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
Increases memory waste

TLB and Cache

* |Is the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?

» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

10

Virtually Indexed Caches

« 24-bit virtual address, 4KB page size - 12 bits offset and
12 bits virtual page number

 To handle the example below, the cache must be designed to use only 12

index bits — for example, make the 64KB cache 16-way

* Page coloring can ensure that some bits of virtual and physical address match

abcdef

abbdef

Virtually indexed
cache

<+ cdef

<+— pdef

Data cache that needs 16
index bits 64KB direct-mapped
or 128KB 2-way... 11

Cache and TLB Pipeline

Virtual address

Offset

Virtual page number Virtual

index

Physical page number

} Physical tag

Physical tag comparion

Virtually Indexed; Physically Tagged Cache

Superpages

* If a program’s working set size is 16 MB and page size is
8KB, there are 2K frequently accessed pages — a 128-entry
TLB will not suffice

* By increasing page size to 128KB, TLB misses will be
eliminated — disadvantage: memory waste, increase in
page fault penalty

« Can we change page size at run-time?

* Note that a single page has to be contiguous in physical
memory

13

Superpages Implementation

* At run-time, build superpages if you find that contiguous
virtual pages are being accessed at the same time

* For example, virtual pages 64-79 may be frequently
accessed — coalesce these pages into a single superpage
of size 128KB that has a single entry in the TLB

» The physical superpage has to be in contiguous physical
memory — the 16 physical pages have to be moved so
they are contiguous

virtual physical virtual physical
N I— —
— 14

Ski Rental Problem

* Promoting a series of contiguous virtual pages into a
superpage reduces TLB misses, but has a cost: copying
physical memory into contiguous locations

« Page usage statistics can determine if pages are good
candidates for superpage promotion, but if cost of a TLB
miss Is X and cost of copying pages is Nx, when do you
decide to form a superpage?

* If ski rentals cost $20 and new skis cost $200, when do |
decide to buy new skis?
» If | rent 10 times and then buy skis, I'm guaranteed to
not spend more than twice the optimal amount
15

Protection

* The hardware and operating system must co-operate to
ensure that different processes do not modify each other’s
memory

* The hardware provides special registers that can be read
In user mode, but only modified by instrs in supervisor mode

* A simple solution: the physical memory is divided between
processes in contiguous chunks by the OS and the bounds
are stored in special registers — the hardware checks every
program access to ensure it is within bounds

* Protection bits are tracked in the TLB on a per-page basis
16

Title

* Bullet

17

