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Lecture 11: ILP Innovations and SMT 

• Today: out-of-order example, ILP innovations, SMT 

  (Sections 3.9-3.10 and supplementary notes) 

 

• HW4 due on Tuesday 
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OOO Example 

• Assumptions same as HW 4, except there are 36 physical 

  registers and 32 logical registers, and width is 4 

 

• Estimate the issue time, completion time, and commit time 

   for the sample code 

IQ 
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Assumptions 

• Perfect branch prediction, instruction fetch, caches 

 

• ADD  dep has no stall;  LD  dep has one stall 

 

• An instr is placed in the IQ at the end of its 5th stage, 

  an instr takes 5 more stages after leaving the IQ 

  (ld/st instrs take 6 more stages after leaving the IQ) 

IQ 
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OOO Example 

      Original code                         Renamed code 

ADD   R1, R2, R3                       ADD  P33, P2, P3 

LD      R2, 8(R1)                         LD     P34, 8(P33) 

ADD   R2, R2, 8                          ADD  P35, P34, 8 

ST      R1, (R3)                           ST      P33, (P3) 

SUB   R1, R1, R5                       SUB   P36, P33, P5 

LD      R1, 8(R2)      Must wait 

ADD   R1, R1, R2 

IQ 
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OOO Example 

      Original code         Renamed code         InQ  Iss  Comp Comm 

ADD   R1, R2, R3      ADD  P33, P2, P3         i    i+1   i+6      i+6 

LD      R2, 8(R1)        LD     P34, 8(P33)         i    i+2   i+8      i+8 

ADD   R2, R2, 8         ADD  P35, P34, 8         i    i+4   i+9      i+9 

ST      R1, (R3)          ST      P33, (P3)            i    i+2   i+8      i+9 

SUB   R1, R1, R5      SUB   P36, P33, P5    i+1  i+2   i+7      i+9 

LD      R1, 8(R2)                                             

ADD   R1, R1, R2                                           

IQ 
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OOO Example 

      Original code         Renamed code         InQ  Iss  Comp Comm 

ADD   R1, R2, R3      ADD  P33, P2, P3         i    i+1   i+6      i+6 

LD      R2, 8(R1)        LD     P34, 8(P33)         i    i+2   i+8      i+8 

ADD   R2, R2, 8         ADD  P35, P34, 8         i    i+4   i+9      i+9 

ST      R1, (R3)          ST      P33, (P3)            i    i+2   i+8      i+9 

SUB   R1, R1, R5      SUB   P36, P33, P5    i+1  i+2   i+7      i+9 

LD      R1, 8(R2)        LD      P1, 8(P35)        i+7  i+8   i+14    i+14 

ADD   R1, R1, R2      ADD   P2, P1, P35      i+9  i+10 i+15    i+15 

IQ 
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Reducing Stalls in Rename/Regfile 

• Larger ROB/register file/issue queue 

 

• Runahead: while a long instruction waits, let a thread run 

   ahead to prefetch (this thread can deallocate resources 

   more aggressively than a processor supporting precise 

   execution) 

 

• Two-level register files: values being kept around in the 

   register file for precise exceptions can be moved to 2nd level 
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Stalls in Issue Queue 

• Two-level issue queues: 2nd level contains instructions that 

   are less likely to be woken up in the near future 

 

• Value prediction: tries to circumvent RAW hazards 

 

• Memory dependence prediction: allows a load to execute 

  even if there are prior stores with unresolved addresses 

 

• Load hit prediction: instructions are scheduled early, 

   assuming that the load will hit in cache 
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Functional Units 

• Clustering: allows quick bypass among a small group of 

   functional units; FUs can also be associated with a subset 

   of the register file and issue queue 
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Thread-Level Parallelism 

• Motivation:  

 a single thread leaves a processor under-utilized  

    for most of the time 

 by doubling processor area, single thread performance 

    barely improves 

 

• Strategies for thread-level parallelism: 

 multiple threads share the same large processor  

    reduces under-utilization, efficient resource allocation 

    Simultaneous Multi-Threading (SMT) 

 each thread executes on its own mini processor  

    simple design, low interference between threads 

    Chip Multi-Processing (CMP) or multi-core 
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How are Resources Shared? 

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC. 

Cycles 

• Superscalar processor has high under-utilization – not enough work every 

  cycle, especially when there is a cache miss 

• Fine-grained multithreading can only issue instructions from a single thread 

  in a cycle – can not find max work every cycle, but cache misses can be tolerated 

• Simultaneous multithreading can issue instructions from any thread every 

  cycle – has the highest probability of finding work for every issue slot 

Superscalar Fine-Grained 

Multithreading 

Simultaneous 

Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Idle 
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What Resources are Shared? 

• Multiple threads are simultaneously active (in other words, 

  a new thread can start without a context switch) 

 

• For correctness, each thread needs its own PC, IFQ,  

  logical regs (and its own mappings from logical to phys regs) 

 

• For performance, each thread could have its own ROB/LSQ 

  (so that a stall in one thread does not stall commit in other 

  threads), I-cache, branch predictor, D-cache, etc. (for low 

  interference), although note that more sharing  better 

  utilization of resources 

 

• Each additional thread costs a PC, IFQ, rename tables, 

  and ROB  – cheap! 
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Front 

End 
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Front 
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Execution Engine 

Rename ROB 

I-Cache Bpred 

Regs IQ 

FUs DCache 

Private/ 
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Resource Sharing 

R1  R1 + R2 

R3  R1 + R4 

R5  R1 + R3 

R2  R1 + R2 

R5  R1 + R2 

R3  R5 + R3 

P65 P1 + P2 

P66  P65 + P4 

P67  P65 + P66 

P76  P33 + P34 

P77  P33 + P76 

P78  P77 + P35 

P65 P1 + P2 

P66  P65 + P4 

P67  P65 + P66 

P76  P33 + P34 

P77  P33 + P76 

P78  P77 + P35 

FU FU FU FU 

Instr Fetch 

Instr Fetch 

Instr Rename 

Instr Rename Issue Queue 

Register File 

Thread-1 

Thread-2 
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Performance Implications of SMT 

• Single thread performance is likely to go down (caches, 

  branch predictors, registers, etc. are shared) – this effect 

  can be mitigated by trying to prioritize one thread 

 

• While fetching instructions, thread priority can dramatically 

  influence total throughput – a widely accepted heuristic 

  (ICOUNT): fetch such that each thread has an equal share 

  of processor resources 

 

• With eight threads in a processor with many resources, 

  SMT yields throughput improvements of roughly 2-4 
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Pentium4 Hyper-Threading 

• Two threads – the Linux operating system operates as if it 

   is executing on a two-processor system 

 

• When there is only one available thread, it behaves like a 

   regular single-threaded superscalar processor 

 

• Statically divided resources: ROB, LSQ, issueq -- a 

  slow thread will not cripple thruput (might not scale) 

 

• Dynamically shared: trace cache and decode 

  (fine-grained multi-threaded, round-robin), FUs, 

  data cache, bpred 
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Multi-Programmed Speedup 

• sixtrack and eon do not degrade 

  their partners (small working sets?) 

 

• swim and art degrade their 

  partners (cache contention?) 

 

• Best combination: swim & sixtrack 

  worst combination: swim & art 

 

• Static partitioning ensures low 

  interference – worst slowdown 

  is 0.9 
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Title 

• Bullet 


