
1

Lecture 11: ILP Innovations and SMT

• Today: out-of-order example, ILP innovations, SMT

 (Sections 3.9-3.10 and supplementary notes)

• HW4 due on Tuesday

2

OOO Example

• Assumptions same as HW 4, except there are 36 physical

 registers and 32 logical registers, and width is 4

• Estimate the issue time, completion time, and commit time

 for the sample code

IQ

3

Assumptions

• Perfect branch prediction, instruction fetch, caches

• ADD dep has no stall; LD dep has one stall

• An instr is placed in the IQ at the end of its 5th stage,

 an instr takes 5 more stages after leaving the IQ

 (ld/st instrs take 6 more stages after leaving the IQ)

IQ

4

OOO Example

 Original code Renamed code

ADD R1, R2, R3 ADD P33, P2, P3

LD R2, 8(R1) LD P34, 8(P33)

ADD R2, R2, 8 ADD P35, P34, 8

ST R1, (R3) ST P33, (P3)

SUB R1, R1, R5 SUB P36, P33, P5

LD R1, 8(R2) Must wait

ADD R1, R1, R2

IQ

5

OOO Example

 Original code Renamed code InQ Iss Comp Comm

ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6

LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8

ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9

ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9

SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9

LD R1, 8(R2)

ADD R1, R1, R2

IQ

6

OOO Example

 Original code Renamed code InQ Iss Comp Comm

ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6

LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8

ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9

ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9

SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9

LD R1, 8(R2) LD P1, 8(P35) i+7 i+8 i+14 i+14

ADD R1, R1, R2 ADD P2, P1, P35 i+9 i+10 i+15 i+15

IQ

7

Reducing Stalls in Rename/Regfile

• Larger ROB/register file/issue queue

• Runahead: while a long instruction waits, let a thread run

 ahead to prefetch (this thread can deallocate resources

 more aggressively than a processor supporting precise

 execution)

• Two-level register files: values being kept around in the

 register file for precise exceptions can be moved to 2nd level

8

Stalls in Issue Queue

• Two-level issue queues: 2nd level contains instructions that

 are less likely to be woken up in the near future

• Value prediction: tries to circumvent RAW hazards

• Memory dependence prediction: allows a load to execute

 even if there are prior stores with unresolved addresses

• Load hit prediction: instructions are scheduled early,

 assuming that the load will hit in cache

9

Functional Units

• Clustering: allows quick bypass among a small group of

 functional units; FUs can also be associated with a subset

 of the register file and issue queue

10

Thread-Level Parallelism

• Motivation:

 a single thread leaves a processor under-utilized

 for most of the time

 by doubling processor area, single thread performance

 barely improves

• Strategies for thread-level parallelism:

 multiple threads share the same large processor

 reduces under-utilization, efficient resource allocation

 Simultaneous Multi-Threading (SMT)

 each thread executes on its own mini processor

 simple design, low interference between threads

 Chip Multi-Processing (CMP) or multi-core

11

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every

 cycle, especially when there is a cache miss

• Fine-grained multithreading can only issue instructions from a single thread

 in a cycle – can not find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every

 cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained

Multithreading

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

12

What Resources are Shared?

• Multiple threads are simultaneously active (in other words,

 a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ,

 logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ

 (so that a stall in one thread does not stall commit in other

 threads), I-cache, branch predictor, D-cache, etc. (for low

 interference), although note that more sharing better

 utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,

 and ROB – cheap!

13

Front

End

Front

End

Front

End

Front

End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUs DCache

Private/

Shared

Front-end

Private

Front-end

Shared

Exec Engine

Pipeline Structure

14

Resource Sharing

R1 R1 + R2

R3 R1 + R4

R5 R1 + R3

R2 R1 + R2

R5 R1 + R2

R3 R5 + R3

P65 P1 + P2

P66 P65 + P4

P67 P65 + P66

P76 P33 + P34

P77 P33 + P76

P78 P77 + P35

P65 P1 + P2

P66 P65 + P4

P67 P65 + P66

P76 P33 + P34

P77 P33 + P76

P78 P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2

15

Performance Implications of SMT

• Single thread performance is likely to go down (caches,

 branch predictors, registers, etc. are shared) – this effect

 can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically

 influence total throughput – a widely accepted heuristic

 (ICOUNT): fetch such that each thread has an equal share

 of processor resources

• With eight threads in a processor with many resources,

 SMT yields throughput improvements of roughly 2-4

16

Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it

 is executing on a two-processor system

• When there is only one available thread, it behaves like a

 regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a

 slow thread will not cripple thruput (might not scale)

• Dynamically shared: trace cache and decode

 (fine-grained multi-threaded, round-robin), FUs,

 data cache, bpred

17

Multi-Programmed Speedup

• sixtrack and eon do not degrade

 their partners (small working sets?)

• swim and art degrade their

 partners (cache contention?)

• Best combination: swim & sixtrack

 worst combination: swim & art

• Static partitioning ensures low

 interference – worst slowdown

 is 0.9

18

Title

• Bullet

