
1

Lecture 9: ILP Innovations

• Today: handling memory dependences with the LSQ and

 innovations for each pipeline stage

 (Sections 3.9-3.10, detailed notes)

• Turn in HW3

• HW4 will be posted by tomorrow, due in a week

2

The Alpha 21264 Out-of-Order Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Reorder Buffer (ROB)

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Results written to

regfile and tags

broadcast to IQ

Speculative

Reg Map

R1P36

R2P34

Committed

Reg Map

R1P1

R2P2

3

Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?

Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]

4

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for

 register dependences and

 executes instructions as soon

 as registers are ready

• Loads/stores access memory

 as well – must check for RAW,

 WAW, and WAR hazards for

 memory as well

• Hence, first check for register

 dependences to compute

 effective addresses; then check

 for memory dependences

5

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are

 maintained in program order in

 the Load/Store Queue (LSQ)

• Loads can issue if they are

 guaranteed to not have true

 dependences with earlier stores

• Stores can issue only if we are

 ready to modify memory (can not

 recover if an earlier instr raises

 an exception)

6

The Alpha 21264 Out-of-Order Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

LD R4  8[R3]

ST R4  8[R1]

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Instr 7

Reorder Buffer (ROB)

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

P36  P35+P34

P37  8[P35]

P37  8[P36]
Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Results written to

regfile and tags

broadcast to IQ

P37  [P35 + 8]

P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed

Reg Map

R1P1

R2P2

Speculative

Reg Map

R1P36

R2P34

7

Improving Performance

• Techniques to increase performance:

 pipelining

 improves clock speed

 increases number of in-flight instructions

 hazard/stall elimination

 branch prediction

 register renaming

 efficient caching

 out-of-order execution with large windows

 memory disambiguation

 bypassing

 increased pipeline bandwidth

8

Deep Pipelining

• Increases the number of in-flight instructions

• Decreases the gap between successive independent

 instructions

• Increases the gap between dependent instructions

• Depending on the ILP in a program, there is an optimal

 pipeline depth

• Tough to pipeline some structures; increases the cost

 of bypassing

9

Increasing Width

• Difficult to find more than four independent instructions

• Difficult to fetch more than six instructions (else, must

 predict multiple branches)

• Increases the number of ports per structure

10

Reducing Stalls in Fetch

• Better branch prediction

 novel ways to index/update and avoid aliasing

 cascading branch predictors

• Trace cache

 stores instructions in the common order of execution,

 not in sequential order

 in Intel processors, the trace cache stores pre-decoded

 instructions

11

Reducing Stalls in Rename/Regfile

• Larger ROB/register file/issue queue

• Virtual physical registers: assign virtual register names to

 instructions, but assign a physical register only when the

 value is made available

• Runahead: while a long instruction waits, let a thread run

 ahead to prefetch (this thread can deallocate resources

 more aggressively than a processor supporting precise

 execution)

• Two-level register files: values being kept around in the

 register file for precise exceptions can be moved to 2nd level

12

Stalls in Issue Queue

• Two-level issue queues: 2nd level contains instructions that

 are less likely to be woken up in the near future

• Value prediction: tries to circumvent RAW hazards

• Memory dependence prediction: allows a load to execute

 even if there are prior stores with unresolved addresses

• Load hit prediction: instructions are scheduled early,

 assuming that the load will hit in cache

13

Functional Units

• Clustering: allows quick bypass among a small group of

 functional units; FUs can also be associated with a subset

 of the register file and issue queue

14

Title

• Bullet

