
1

Lecture 8: Dynamic ILP

• Topics: out-of-order processors

 (See class notes)

• HW3 is posted, due on Tuesday

2

An Out-of-Order Processor Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

T1

T2

T3

T4

T5

T6

Reorder Buffer (ROB)

T1  R1+R2

T2  T1+R3

BEQZ T2

T4  T1+T2

T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File

R1-R32

Results written to

ROB and tags

broadcast to IQ

3

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions

 that enter also get placed in the ROB – the process of an

 instruction leaving the ROB (in order) is called commit –

 an instruction commits only if it and all instructions before

 it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the

 register file only when the instruction commits – until then,

 the result is saved in a temporary register in the ROB

4

Design Details - II

• Instructions get renamed and placed in the issue queue –

 some operands are available (T1-T6; R1-R32), while

 others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)

 and broadcast the operand tag (T1-T6) to the issue queue –

 instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from

 T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more

 names (T1-T6), name dependences can be avoided

5

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top

 of the ROB – at this point, R1-R32 contain results for all

 instructions up to instr-3 – save registers, save PC of instr-3,

 and service the exception

• If branch is a mispredict, flush all instructions after the

 branch and start on the correct path – mispredicted instrs

 will not have updated registers (the branch cannot commit

 until it has completed and the flush happens as soon as the

 branch completes)

• Potential problems: ?

6

Managing Register Names

Logical

Registers

R1-R32
Physical

Registers

P1-P64

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

At the start, R1-R32 can be found in P1-P32

Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

7

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value

 of R1 is now in P33 and not P1 – on an exception, P33 is

 copied to memory and not P1

• An instruction in the issue queue need not modify its

 input operand when the producer commits

• When instruction-1 commits, we no longer have any use

 for P1 – it is put in a free pool and a new instruction can

 now enter the pipeline  for every instr that commits, a

 new instr can enter the pipeline  number of in-flight

 instrs is a constant = number of extra (rename) registers

8

The Alpha 21264 Out-of-Order Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Reorder Buffer (ROB)

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Results written to

regfile and tags

broadcast to IQ

Speculative

Reg Map

R1P36

R2P34

Committed

Reg Map

R1P1

R2P2

9

Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?

Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]

10

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for

 register dependences and

 executes instructions as soon

 as registers are ready

• Loads/stores access memory

 as well – must check for RAW,

 WAW, and WAR hazards for

 memory as well

• Hence, first check for register

 dependences to compute

 effective addresses; then check

 for memory dependences

11

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are

 maintained in program order in

 the Load/Store Queue (LSQ)

• Loads can issue if they are

 guaranteed to not have true

 dependences with earlier stores

• Stores can issue only if we are

 ready to modify memory (can not

 recover if an earlier instr raises

 an exception)

12

The Alpha 21264 Out-of-Order Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

LD R4  8[R3]

ST R4  8[R1]

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Instr 7

Reorder Buffer (ROB)

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

P36  P35+P34

P37  8[P35]

P37  8[P36]
Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Results written to

regfile and tags

broadcast to IQ

P37  [P35 + 8]

P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed

Reg Map

R1P1

R2P2

Speculative

Reg Map

R1P36

R2P34

13

Title

• Bullet

