
1

Lecture 7: Branch Prediction, Dynamic ILP

• Topics: branch prediction, out-of-order processors

 (Sections 3.3, notes on class webpage)

2

Pipeline without Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles

If the branch went the wrong way, one incorrect instr is fetched

One stall cycle per incorrect branch

3

Pipeline with Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

In the 5-stage pipeline, a branch completes in two cycles

If the branch went the wrong way, one incorrect instr is fetched

One stall cycle per incorrect branch

Branch

Predictor

4

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time

 and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

 while (1) {

 for (i=0;i<10;i++) { branch-1

 …

 }

 for (j=0;j<20;j++) { branch-2

 …

 }

 }

5

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:

 if the branch is taken: counter = min(3,counter+1)

 if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the

 prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same

 counter (some bits of the branch PC are used to index

 into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)

6

Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of

1K entries

Each

entry is

a bit

The table keeps track of what the branch did last time

7

Bimodal 2-Bit Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter The table keeps track of the common-case

 outcome for the branch

8

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating

 counter for each entry (or use 10 branch PC bits to index

 into one of 1024 counters) – captures the recent

 “common case” for each branch

• Can we take advantage of additional information?

 If a branch recently went 01111, expect 0; if it

 recently went 11101, expect 1; can we have a

 separate counter for each case?

 If the previous branches went 01, expect 0; if the

 previous branches went 11, expect 1; can we have

 a separate counter for each case?

Hence, build correlating predictors

9

Global Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter The table keeps track of the common-case

 outcome for the branch/history combo

Global history

XOR

10

Local Predictor

Branch PC

Table of

16K entries

of 2-bit

saturating

counters

Table of 64 entries of 14-bit

histories for a single branch

10110111011001

Use 6 bits of branch PC to

index into local history table

14-bit history

indexes into

next level

Also a two-level predictor that only

uses local histories at the first level

11

Local Predictor

Branch PC

6 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter

The table keeps track of the common-case

 outcome for the branch/local-history combo

Local history

10 bit entries

XOR

64 entries

10 bits

12

Local/Global Predictors

• Instead of maintaining a counter for each branch to

 capture the common case,

 Maintain a counter for each branch and surrounding pattern

 If the surrounding pattern belongs to the branch being

 predicted, the predictor is referred to as a local predictor

 If the surrounding pattern includes neighboring branches,

 the predictor is referred to as a global predictor

13

Tournament Predictors

• A local predictor might work well for some branches or

 programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to

 identify which predictor is best for each branch

Tournament

Predictor

Branch PC

Table of 2-bit

saturating counters

Local

Predictor

Global

Predictor

M

U

X

Alpha 21264:

1K entries in level-1

1K entries in level-2

4K entries

12-bit global history

4K entries

Total capacity: ?

14

Branch Target Prediction

• In addition to predicting the branch direction, we must

 also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches

 might be problematic

• Most common indirect branch: return from a procedure –

 can be easily handled with a stack of return addresses

15

An Out-of-Order Processor Implementation

Branch prediction

and instr fetch

R1 R1+R2

R2 R1+R3

BEQZ R2

R3 R1+R2

R1 R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

T1

T2

T3

T4

T5

T6

Reorder Buffer (ROB)

T1 R1+R2

T2 T1+R3

BEQZ T2

T4 T1+T2

T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File

R1-R32

Results written to

ROB and tags

broadcast to IQ

16

Title

• Bullet

