
1

Lecture 6: Static ILP, Branch prediction

• Topics: static ILP wrap-up, bimodal, global, local

 branch prediction (Sections 3.2-3.3)

• No class on Thursday 2nd Feb

• Move final from in-class to finals week?

• Homework 2 due next Tuesday

2

Superscalar Pipelines

 Integer pipeline FP pipeline

Loop: L.D F0,0(R1)

 L.D F6,-8(R1)

 L.D F10,-16(R1) ADD.D F4,F0,F2

 L.D F14,-24(R1) ADD.D F8,F6,F2

 L.D F18,-32(R1) ADD.D F12,F10,F2

 S.D F4,0(R1) ADD.D F16,F14,F2

 S.D F8,-8(R1) ADD.D F20,F18,F2

 S.D F12,-16(R1)

 DADDUI R1,R1,# -40

 S.D F16,16(R1)

 BNE R1,R2,Loop

 S.D F20,8(R1)

• Need unroll by degree 5 to eliminate stalls

• The compiler may specify instructions that can be issued as one packet

• The compiler may specify a fixed number of instructions in each packet:

 Very Large Instruction Word (VLIW)

3

Software Pipeline?!

L.D ADD.D S.D

DADDUI BNE

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D ADD.D

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

…

…

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

4

Software Pipeline

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D

Original iter 1

Original iter 2

Original iter 3

Original iter 4

New iter 1

New iter 2

New iter 3

New iter 4

5

Software Pipelining

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

Loop: S.D F4, 16(R1)

 ADD.D F4, F0, F2

 L.D F0, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

• Advantages: achieves nearly the same effect as loop unrolling, but

 without the code expansion – an unrolled loop may have inefficiencies

 at the start and end of each iteration, while a sw-pipelined loop is

 almost always in steady state – a sw-pipelined loop can also be unrolled

 to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more

 registers

6

Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need

 to re-fetch on a mispredict

• For short loop bodies, control dependences can be

 converted to data dependences by using

 predicated/conditional instructions

7

Predicated or Conditional Instructions

• The instruction has an additional operand that determines

 whether the instr completes or gets converted into a no-op

• Example: lwc R1, 0(R2), R3 (load-word-conditional)

 will load the word at address (R2) into R1 if R3 is non-zero;

 if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence

 (branches disappear) ; may need register copies for the

 condition or for values used by both directions

if (R1 == 0)

 R2 = R2 + R4

else

 R6 = R3 + R5

 R4 = R2 + R3

R7 = !R1 ; R8 = R2 ;

R2 = R2 + R4 (predicated on R7)

R6 = R3 + R5 (predicated on R1)

R4 = R8 + R3 (predicated on R1)

8

Complications

• Each instruction has one more input operand – more

 register ports/bypassing

• If the branch condition is not known, the instruction stalls

 (remember, these are in-order processors)

• Some implementations allow the instruction to continue

 without the branch condition and squash/complete later in

 the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate

9

Support for Speculation

• In general, when we re-order instructions, register renaming

 can ensure we do not violate register data dependences

• However, we need hardware support

 to ensure that an exception is raised at the correct point

 to ensure that we do not violate memory dependences

 st

 br

ld

10

Detecting Exceptions

• Some exceptions require that the program be terminated

 (memory protection violation), while other exceptions

 require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing

 the exception only implies potential performance loss

• In the former case, you want to defer servicing the

 exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode

 to indicate that it is speculative

11

Program-Terminate Exceptions

• When a speculative instruction experiences an exception,

 instead of servicing it, it writes a special NotAThing value

 (NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the

 exception and the program terminates (it may not be

 desireable that the error is caused by an array access, but

 the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative

 instruction’s original location checks the register value and

 initiates recovery

12

Memory Dependence Detection

• If a load is moved before a preceding store, we must

 ensure that the store writes to a non-conflicting address,

 else, the load has to re-execute

• When the speculative load issues, it stores its address in

 a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a

 violation occurred for that address

• A special instruction (the sentinel) in the load’s original

 location checks to see if the address had a violation and

 re-executes the load if necessary

13

Dynamic Vs. Static ILP

• Static ILP:

+ The compiler finds parallelism  no extra hw 

 higher clock speeds and lower power

+ Compiler knows what is next  better global schedule

- Compiler can not react to dynamic events (cache misses)

- Can not re-order instructions unless you provide

 hardware and extra instructions to detect violations

 (eats into the low complexity/power argument)

- Static branch prediction is poor  even statically

 scheduled processors use hardware branch predictors

- Building an optimizing compiler is easier said than done

• A comparison of the Alpha, Pentium 4, and Itanium (statically

 scheduled IA-64 architecture) shows that the Itanium is not

 much better in terms of performance, clock speed or power

14

Control Hazards

• In the 5-stage in-order processor: assume always taken

 or assume always not taken; if the branch goes the other

 way, squash mis-fetched instructions (momentarily,

 forget about branch delay slots)

• Modern in-order and out-of-order processors: dynamic

 branch prediction; instead of a default not-taken

 assumption, either predict not-taken, or predict

 taken-to-X, or predict taken-to-Y

• Branch predictor: a cache of recent branch outcomes

15

Pipeline without Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 

If the branch went the wrong way, one incorrect instr is fetched 

One stall cycle per incorrect branch

16

Pipeline with Branch Predictor

IF (br)

PC

Reg Read

Compare

Br-target

In the 5-stage pipeline, a branch completes in two cycles 

If the branch went the wrong way, one incorrect instr is fetched 

One stall cycle per incorrect branch

Branch

Predictor

17

Branch Mispredict Penalty

• Assume: no data or structural hazards; only control

 hazards; every 5th instruction is a branch; branch

 predictor accuracy is 90%

• Slowdown = 1 / (1 + stalls per instruction)

• Stalls per instruction = % branches x %mispreds x penalty

 = 20% x 10% x 1

 = 0.02

• Slowdown = 1/1.02 ; if penalty = 20, slowdown = 1/1.4

18

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time

 and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

 while (1) {

 for (i=0;i<10;i++) { branch-1

 …

 }

 for (j=0;j<20;j++) { branch-2

 …

 }

 }

19

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:

 if the branch is taken: counter = min(3,counter+1)

 if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the

 prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same

 counter (some bits of the branch PC are used to index

 into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)

20

Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of

1K entries

Each

entry is

a bit

The table keeps track of what the branch did last time

21

Bimodal 2-Bit Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter The table keeps track of the common-case

 outcome for the branch

22

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating

 counter for each entry (or use 10 branch PC bits to index

 into one of 1024 counters) – captures the recent

 “common case” for each branch

• Can we take advantage of additional information?

 If a branch recently went 01111, expect 0; if it

 recently went 11101, expect 1; can we have a

 separate counter for each case?

 If the previous branches went 01, expect 0; if the

 previous branches went 11, expect 1; can we have

 a separate counter for each case?

Hence, build correlating predictors

23

Global Predictor

A single register that keeps track

of recent history for all branches

00110101

Branch PC

8 bits

6 bits

Table of

16K entries

of 2-bit

saturating

counters

Also referred to as a two-level predictor

24

Local Predictor

Branch PC

Table of

16K entries

of 2-bit

saturating

counters

Table of 64 entries of 14-bit

histories for a single branch

10110111011001

Use 6 bits of branch PC to

index into local history table

14-bit history

indexes into

next level

Also a two-level predictor that only

uses local histories at the first level

25

Global Predictor

Branch PC

10 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter The table keeps track of the common-case

 outcome for the branch/history combo

Global history

XOR

26

Local Predictor

Branch PC

6 bits Table of

1K entries

Each

entry is

a 2-bit

sat.

counter

The table keeps track of the common-case

 outcome for the branch/local-history combo

Local history

10 bit entries

XOR

64 entries

10 bits

27

Local/Global Predictors

• Instead of maintaining a counter for each branch to

 capture the common case,

 Maintain a counter for each branch and surrounding pattern

 If the surrounding pattern belongs to the branch being

 predicted, the predictor is referred to as a local predictor

 If the surrounding pattern includes neighboring branches,

 the predictor is referred to as a global predictor

28

Tournament Predictors

• A local predictor might work well for some branches or

 programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to

 identify which predictor is best for each branch

Tournament

Predictor

Branch PC

Table of 2-bit

saturating counters

Local

Predictor

Global

Predictor

M

U

X

Alpha 21264:

1K entries in level-1

1K entries in level-2

4K entries

12-bit global history

4K entries

Total capacity: ?

29

Branch Target Prediction

• In addition to predicting the branch direction, we must

 also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches

 might be problematic

• Most common indirect branch: return from a procedure –

 can be easily handled with a stack of return addresses

30

Title

• Bullet

