
1 

Lecture 6: Static ILP, Branch prediction 

• Topics: static ILP wrap-up, bimodal, global, local  

   branch prediction (Sections 3.2-3.3) 

 

• No class on Thursday 2nd Feb 

 

• Move final from in-class to finals week? 

 

• Homework 2 due next Tuesday 



2 

Superscalar Pipelines 

                 Integer pipeline                  FP pipeline 

Loop:        L.D         F0,0(R1) 

                 L.D         F6,-8(R1) 

                 L.D         F10,-16(R1)      ADD.D   F4,F0,F2 

                 L.D         F14,-24(R1)      ADD.D   F8,F6,F2 

                 L.D         F18,-32(R1)      ADD.D   F12,F10,F2 

                 S.D         F4,0(R1)           ADD.D   F16,F14,F2 

                 S.D         F8,-8(R1)          ADD.D   F20,F18,F2 

                 S.D         F12,-16(R1) 

                 DADDUI  R1,R1,# -40 

                 S.D         F16,16(R1) 

                 BNE        R1,R2,Loop 

                 S.D          F20,8(R1) 

• Need unroll by degree 5 to eliminate stalls 

• The compiler may specify instructions that can be issued as one packet 

• The compiler may specify a fixed number of instructions in each packet: 

  Very Large Instruction Word (VLIW) 



3 

Software Pipeline?! 

L.D ADD.D S.D 

DADDUI BNE 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D 

L.D ADD.D 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

… 

… 

Loop:     L.D         F0, 0(R1)        

              ADD.D    F4, F0, F2      

              S.D         F4, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  



4 

Software Pipeline 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D 

L.D 

Original iter  1 

Original iter  2 

Original iter  3 

Original iter  4 

New iter  1 

New iter  2 

New iter  3 

New iter  4 



5 

Software Pipelining 

Loop:     L.D         F0, 0(R1)        

              ADD.D    F4, F0, F2      

              S.D         F4, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  

Loop:     S.D         F4, 16(R1)        

              ADD.D    F4, F0, F2      

              L.D          F0, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  

• Advantages: achieves nearly the same effect as loop unrolling, but 

  without the code expansion – an unrolled loop may have inefficiencies 

  at the start and end of each iteration, while a sw-pipelined loop is 

  almost always in steady state – a sw-pipelined loop can also be unrolled 

  to reduce loop overhead 

 

• Disadvantages: does not reduce loop overhead, may require more 

  registers 



6 

Predication 

• A branch within a loop can be problematic to schedule 

 

• Control dependences are a problem because of the need 

  to re-fetch on a mispredict 

 

• For short loop bodies, control dependences can be 

  converted to data dependences by using  

  predicated/conditional instructions 



7 

Predicated or Conditional Instructions 

• The instruction has an additional operand that determines 

  whether the instr completes or gets converted into a no-op 

 

• Example: lwc  R1, 0(R2), R3    (load-word-conditional) 

  will load the word at address (R2) into R1 if R3 is non-zero; 

  if R3 is zero, the instruction becomes a no-op 

 

• Replaces a control dependence with a data dependence 

  (branches disappear) ; may need register copies for the 

  condition or for values used by both directions 

if (R1 == 0)  

   R2 = R2 + R4 

else  

   R6 = R3 + R5 

   R4 = R2 + R3 

R7 = !R1 ;  R8 = R2 ; 

R2 = R2 + R4   (predicated on R7) 

R6 = R3 + R5   (predicated on R1) 

R4 = R8 + R3   (predicated on R1)  



8 

Complications 

• Each instruction has one more input operand – more 

  register ports/bypassing 

 

• If the branch condition is not known, the instruction stalls 

  (remember, these are in-order processors) 

 

• Some implementations allow the instruction to continue 

  without the branch condition and squash/complete later in 

  the pipeline – wasted work 

 

• Increases register pressure, activity on functional units 

 

• Does not help if the br-condition takes a while to evaluate 



9 

Support for Speculation 

• In general, when we re-order instructions, register renaming 

  can ensure we do not violate register data dependences 

 

• However, we need hardware support 

 to ensure that an exception is raised at the correct point 

 to ensure that we do not violate memory dependences 

          st 

          br 

 

ld 



10 

Detecting Exceptions 

• Some exceptions require that the program be terminated 

  (memory protection violation), while other exceptions 

  require execution to resume (page faults) 

 

• For a speculative instruction, in the latter case, servicing  

  the exception only implies potential performance loss 

 

• In the former case, you want to defer servicing the 

  exception until you are sure the instruction is not speculative 

 

• Note that a speculative instruction needs a special opcode 

  to indicate that it is speculative 



11 

Program-Terminate Exceptions 

• When a speculative instruction experiences an exception, 

  instead of servicing it, it writes a special NotAThing value 

  (NAT) in the destination register 

 

• If a non-speculative instruction reads a NAT, it flags the 

  exception and the program terminates (it may not be 

  desireable that the error is caused by an array access, but 

  the segfault happens two procedures later) 

 

• Alternatively, an instruction (the sentinel) in the speculative 

  instruction’s original location checks the register value and 

  initiates recovery 



12 

Memory Dependence Detection 

• If a load is moved before a preceding store, we must 

  ensure that the store writes to a non-conflicting address, 

  else, the load has to re-execute 

 

• When the speculative load issues, it stores its address in 

  a table (Advanced Load Address Table in the IA-64) 

 

• If a store finds its address in the ALAT, it indicates that a 

  violation occurred for that address 

 

• A special instruction (the sentinel) in the load’s original 

  location checks to see if the address had a violation and  

  re-executes the load if necessary 



13 

Dynamic Vs. Static ILP 

• Static ILP: 

+ The compiler finds parallelism  no extra hw  

   higher clock speeds and lower power 

+ Compiler knows what is next  better global schedule 

-  Compiler can not react to dynamic events (cache misses) 

-  Can not re-order instructions unless you provide 

   hardware and extra instructions to detect violations 

   (eats into the low complexity/power argument) 

-  Static branch prediction is poor  even statically 

   scheduled processors use hardware branch predictors 

-  Building an optimizing compiler is easier said than done 

• A comparison of the Alpha, Pentium 4, and Itanium (statically 

  scheduled IA-64 architecture) shows that the Itanium is not 

  much better in terms of performance, clock speed or power 



14 

Control Hazards 

• In the 5-stage in-order processor: assume always taken 

  or assume always not taken; if the branch goes the other 

  way, squash mis-fetched instructions (momentarily, 

  forget about branch delay slots) 

 

• Modern in-order and out-of-order processors: dynamic 

  branch prediction; instead of a default not-taken 

  assumption, either predict not-taken, or predict  

  taken-to-X, or predict taken-to-Y 

 

• Branch predictor: a cache of recent branch outcomes 



15 

Pipeline without Branch Predictor 

IF (br) 

PC 

Reg Read 

Compare 

Br-target 

PC + 4 

In the 5-stage pipeline, a branch completes in two cycles  

If the branch went the wrong way, one incorrect instr is fetched  

One stall cycle per incorrect branch 



16 

Pipeline with Branch Predictor 

IF (br) 

PC 

Reg Read 

Compare 

Br-target 

In the 5-stage pipeline, a branch completes in two cycles  

If the branch went the wrong way, one incorrect instr is fetched  

One stall cycle per incorrect branch 

Branch 

Predictor 



17 

Branch Mispredict Penalty 

• Assume: no data or structural hazards; only control 

  hazards; every 5th instruction is a branch; branch 

  predictor accuracy is 90% 

 

• Slowdown = 1 / (1 + stalls per instruction) 

 

• Stalls per instruction = % branches x %mispreds x penalty 

                                    = 20% x 10% x 1 

                                    = 0.02 

 

• Slowdown = 1/1.02  ; if penalty = 20, slowdown = 1/1.4 



18 

1-Bit Bimodal Prediction 

• For each branch, keep track of what happened last time 

  and use that outcome as the prediction 

 

• What are prediction accuracies for branches 1 and 2 below: 

 

     while (1) { 

            for (i=0;i<10;i++) {                     branch-1 

                … 

            } 

            for (j=0;j<20;j++) {                     branch-2 

               … 

            } 

     } 



19 

2-Bit Bimodal Prediction 

• For each branch, maintain a 2-bit saturating counter: 

   if the branch is taken: counter = min(3,counter+1) 

   if the branch is not taken: counter = max(0,counter-1) 

 

• If (counter >= 2), predict taken, else predict not taken 

 

• Advantage: a few atypical branches will not influence the 

  prediction (a better measure of “the common case”) 

 

• Especially useful when multiple branches share the same 

  counter (some bits of the branch PC are used to index 

  into the branch predictor) 

 

• Can be easily extended to N-bits (in most processors, N=2) 



20 

Bimodal 1-Bit Predictor 

Branch PC 

10 bits 

Table of 

1K entries 

 

Each 

entry is 

a bit 

The table keeps track of what the branch did last time 



21 

Bimodal 2-Bit Predictor 

Branch PC 

10 bits Table of 

1K entries 

 

Each 

entry is 

a 2-bit 

sat. 

counter The table keeps track of the common-case 

 outcome for the branch 



22 

Correlating Predictors 

• Basic branch prediction: maintain a 2-bit saturating 

  counter for each entry (or use 10 branch PC bits to index 

  into one of 1024 counters) – captures the recent  

  “common case” for each branch 

 

• Can we take advantage of additional information? 

 If a branch recently went  01111, expect 0; if it 

    recently went  11101, expect 1; can we have a 

    separate counter for each case? 

 If the previous branches went  01, expect 0; if the 

    previous branches went 11, expect 1; can we have 

    a separate counter for each case? 

 

Hence, build correlating predictors 



23 

Global Predictor 

A single register that keeps track 

of recent history for all branches 

00110101 

Branch PC 

8 bits 

6 bits 

Table of 

16K entries 

of 2-bit 

saturating 

counters 

Also referred to as a two-level predictor 



24 

Local Predictor 

Branch PC 

Table of 

16K entries 

of 2-bit 

saturating 

counters 

Table of 64 entries of 14-bit 

histories for a single branch 

10110111011001 

Use 6 bits of branch PC to 

index into local history table 

14-bit history 

indexes into 

next level 

Also a two-level predictor that only 

uses local histories at the first level 



25 

Global Predictor 

Branch PC 

10 bits Table of 

1K entries 

 

Each 

entry is 

a 2-bit 

sat. 

counter The table keeps track of the common-case 

 outcome for the branch/history combo 

Global history 

XOR 



26 

Local Predictor 

Branch PC 

6 bits Table of 

1K entries 

 

Each 

entry is 

a 2-bit 

sat. 

counter 

The table keeps track of the common-case 

 outcome for the branch/local-history combo 

Local history 

10 bit entries 

XOR 

64 entries 

10 bits 



27 

Local/Global Predictors 

• Instead of maintaining a counter for each branch to 

  capture the common case, 

 

 Maintain a counter for each branch and surrounding pattern 

 If the surrounding pattern belongs to the branch being 

     predicted, the predictor is referred to as a local predictor 

 If the surrounding pattern includes neighboring branches, 

     the predictor is referred to as a global predictor 



28 

Tournament Predictors 

• A local predictor might work well for some branches or 

  programs, while a global predictor might work well for others 

 

• Provide one of each and maintain another predictor to 

  identify which predictor is best for each branch 

Tournament 

Predictor 

Branch PC 

Table of 2-bit 

saturating counters 

Local 

Predictor 

Global 

Predictor 

M 

U 

X 

Alpha 21264: 

1K entries in level-1 

1K entries in level-2 

 

4K entries 

12-bit global history 

 

4K entries 

 

Total capacity: ? 



29 

Branch Target Prediction 

• In addition to predicting the branch direction, we must 

  also predict the branch target address 

 

• Branch PC indexes into a predictor table; indirect branches 

  might be problematic 

 

• Most common indirect branch: return from a procedure – 

  can be easily handled with a stack of return addresses 



30 

Title 

• Bullet 


