Lecture 6: Static ILP, Branch prediction

* Topics: static ILP wrap-up, bimodal, global, local
branch prediction (Sections 3.2-3.3)

* No class on Thursday 2" Feb
* Move final from in-class to finals week?

 Homework 2 due next Tuesday

Superscalar Pipelines

Integer pipeline FP pipeline
Loop: L.D FO,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1) ADD.D F4,F0,F2

L.D F14,-24(R1) ADD.D F8,F6,F2

L.D F18,-32(R1) ADD.D F12,F10,F2

S.D F4,0(R1) ADD.D F16,F14,F2

S.D F8,-8(R1) ADD.D F20,F18,F2

S.D F12,-16(R1)

DADDUI R1,R1,# -40

S.D F16,16(R1)

BNE R1,R2,Loop

S.D F20,8(R1)

* Need unroll by degree 5 to eliminate stalls
* The compiler may specify instructions that can be issued as one packet

* The compiler may specify a fixed number of instructions in each packet:
Very Large Instruction Word (VLIW) 2

Software Pipeline?!

ADD.D S.D
DADDUI BNE
ADD.D S.D
DADDUI BNE
ADD.D S.D
DADDUI BNE
ADD.D S.D
DADDUI BNE
Loop: L.D FO, O(R1) ADD.D
QPDD'D Ej: gé)F,le)z DADDUI BNE
DADDUI R1, R1,# -8 Py
BNE R1, R2, Loop
DADDUI BNE

Software Pipeline

Original iter 2

<— QOriginal iter 3

New iter 1

T

New iter 2

T

New iter 3 T

New iter 4

Software Pipelining

Loop: L.D FO, O(R1) Loop: S.D F4, 16(R1)
ADD.D F4, FO, F2 ADD.D F4, FO, F2
S.D F4, O(R1) I L.D FO, O(R1)
DADDUI R1, R1,# -8 DADDUI R1, R1,# -8
BNE R1, R2, Loop BNE R1, R2, Loop

* Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion — an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is

almost always in steady state — a sw-pipelined loop can also be unrolled
to reduce loop overhead

 Disadvantages: does not reduce loop overhead, may require more
registers

Predication

A branch within a loop can be problematic to schedule

 Control dependences are a problem because of the need
to re-fetch on a mispredict

* For short loop bodies, control dependences can be
converted to data dependences by using
predicated/conditional instructions

Predicated or Conditional Instructions

* The instruction has an additional operand that determines
whether the instr completes or gets converted into a no-op

 Example: lwc R1, O(R2), R3 (load-word-conditional)
will load the word at address (R2) into R1 if R3 is non-zero;
If R3 Is zero, the instruction becomes a no-op

* Replaces a control dependence with a data dependence
(branches disappear) ; may need register copies for the
condition or for values used by both directions

if (R1==0) R7=1R1; R8=R2;
R2=R2+R4|_IR2=R2+R4 (predicated on R7)

else R6 = R3 +R5 (predicated on R1)
R6 =R3 +R5 R4 = R8 + R3 (predicated on R1)
R4 =R2 + R3 !

Complications

« Each instruction has one more input operand — more
register ports/bypassing

* If the branch condition is not known, the instruction stalls
(remember, these are in-order processors)

« Some implementations allow the instruction to continue
without the branch condition and squash/complete later in
the pipeline — wasted work

* Increases register pressure, activity on functional units

* Does not help if the br-condition takes a while to evaluate
8

Support for Speculation

* In general, when we re-order instructions, register renaming
can ensure we do not violate register data dependences

* However, we need hardware support
» to ensure that an exception is raised at the correct point
» 1o ensure that we do not violate memory dependences

Detecting Exceptions

» Some exceptions require that the program be terminated
(memory protection violation), while other exceptions
require execution to resume (page faults)

* For a speculative instruction, in the latter case, servicing
the exception only implies potential performance loss

* In the former case, you want to defer servicing the
exception until you are sure the instruction is not speculative

* Note that a speculative instruction needs a special opcode
to indicate that it is speculative

10

Program-Terminate Exceptions

* When a speculative instruction experiences an exception,
Instead of servicing it, it writes a special NotAThing value
(NAT) in the destination register

* If a non-speculative instruction reads a NAT, it flags the
exception and the program terminates (it may not be
desireable that the error is caused by an array access, but
the segfault happens two procedures later)

* Alternatively, an instruction (the sentinel) in the speculative
iInstruction’s original location checks the register value and
Initiates recovery

11

Memory Dependence Detection

* If a load is moved before a preceding store, we must
ensure that the store writes to a non-conflicting address,
else, the load has to re-execute

* When the speculative load issues, it stores its address in
a table (Advanced Load Address Table in the 1A-64)

e If a store finds its address in the ALAT, it indicates that a
violation occurred for that address

* A special instruction (the sentinel) in the load’s original
location checks to see if the address had a violation and

re-executes the load if necessary 12

Dynamic Vs. Static ILP

- Static ILP:
The compiler finds parallelism - no extra hw -
higher clock speeds and lower power
Compiler knows what is next - better global schedule
Compiler can not react to dynamic events (cache misses)
Can not re-order instructions unless you provide
hardware and extra instructions to detect violations
(eats into the low complexity/power argument)
Static branch prediction is poor - even statically
scheduled processors use hardware branch predictors
Building an optimizing compiler is easier said than done
* A comparison of the Alpha, Pentium 4, and Itanium (statically
scheduled IA-64 architecture) shows that the Itanium is not
much better in terms of performance, clock speed or powger

Control Hazards

* In the 5-stage In-order processor: assume always taken
or assume always not taken; if the branch goes the other
way, squash mis-fetched instructions (momentarily,
forget about branch delay slots)

* Modern in-order and out-of-order processors: dynamic
branch prediction; instead of a default not-taken
assumption, either predict not-taken, or predict
taken-to-X, or predict taken-to-Y

 Branch predictor: a cache of recent branch outcomes

14

Pipeline without Branch Predictor

In the 5-stage pipeline, a branch completes in two cycles -
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch

15

Pipeline with Branch Predictor

Branch
Predictor

In the 5-stage pipeline, a branch completes in two cycles -
If the branch went the wrong way, one incorrect instr is fetched -
One stall cycle per incorrect branch

16

Branch Mispredict Penalty

« Assume: no data or structural hazards; only control
hazards; every 5" instruction is a branch; branch
predictor accuracy is 90%
» Slowdown =1/ (1 + stalls per instruction)
« Stalls per instruction = % branches x %mispreds x penalty
=20% x10% x 1
=0.02

» Slowdown = 1/1.02 ; if penalty = 20, slowdown = 1/1.4

17

1-Bit Bimodal Prediction

* For each branch, keep track of what happened last time
and use that outcome as the prediction

« What are prediction accuracies for branches 1 and 2 below:

while (1) {
for (i=0;i<10;i++) { branch-1
}
for (j=0;j<20;j++) { branch-2
}

18

2-Bit Bimodal Prediction

 For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)

* If (counter >= 2), predict taken, else predict not taken

» Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

 Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
Into the branch predictor)

« Can be easily extended to N-bits (in most processors, Nx2)

Bimodal 1-Bit Predictor

10 bitsl

The table keeps track of what the branch did last time

20

Bimodal 2-Bit Predictor

10 bitsl

The table keeps track of the common-case
outcome for the branch

21

Correlating Predictors

 Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
Into one of 1024 counters) — captures the recent
“‘common case” for each branch

« Can we take advantage of additional information?

» If a branch recently went 01111, expect O; if it
recently went 11101, expect 1; can we have a
separate counter for each case?

» If the previous branches went 01, expect O; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors 22

Global Predictor

A single register that keeps track
of recent history for all branches

» 8 bits
> 6 bits

Also referred to as a two-level predictor

23

Local Predictor

Also a two-level predictor that only

_ uses local histories at the first level

Use 6 bits of branch PC to
Index into local history table

— > 10110111011001

14-Dbit history
iIndexes into

Table of 64 entries of 14-bit next level
histories for a single branch

24

Global Predictor

10 bitsl

| XOR

The table keeps track of the common-case
outcome for the branch/history combo

25

Local Predictor

10 bits >

6 bits

64 entries

The table keeps track of the common-case
outcome for the branch/local-history combo

XOR

26

Local/Global Predictors

* Instead of maintaining a counter for each branch to
capture the common case,

- Maintain a counter for each branch and surrounding pattern

- If the surrounding pattern belongs to the branch being
predicted, the predictor is referred to as a local predictor

- If the surrounding pattern includes neighboring branches,
the predictor is referred to as a global predictor

27

Tournament Predictors

* A local predictor might work well for some branches or
programs, while a global predictor might work well for others

 Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Alpha 21264
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Table of 2-bit Total capacity: ?
saturating counters 28

Branch Target Prediction

* In addition to predicting the branch direction, we must
also predict the branch target address

* Branch PC indexes into a predictor table; indirect branches
might be problematic

* Most common indirect branch: return from a procedure —
can be easily handled with a stack of return addresses

29

Title

* Bullet

30

