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Lecture 6: Static ILP, Branch prediction 

• Topics: static ILP wrap-up, bimodal, global, local  

   branch prediction (Sections 3.2-3.3) 

 

• No class on Thursday 2nd Feb 

 

• Move final from in-class to finals week? 

 

• Homework 2 due next Tuesday 
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Superscalar Pipelines 

                 Integer pipeline                  FP pipeline 

Loop:        L.D         F0,0(R1) 

                 L.D         F6,-8(R1) 

                 L.D         F10,-16(R1)      ADD.D   F4,F0,F2 

                 L.D         F14,-24(R1)      ADD.D   F8,F6,F2 

                 L.D         F18,-32(R1)      ADD.D   F12,F10,F2 

                 S.D         F4,0(R1)           ADD.D   F16,F14,F2 

                 S.D         F8,-8(R1)          ADD.D   F20,F18,F2 

                 S.D         F12,-16(R1) 

                 DADDUI  R1,R1,# -40 

                 S.D         F16,16(R1) 

                 BNE        R1,R2,Loop 

                 S.D          F20,8(R1) 

• Need unroll by degree 5 to eliminate stalls 

• The compiler may specify instructions that can be issued as one packet 

• The compiler may specify a fixed number of instructions in each packet: 

  Very Large Instruction Word (VLIW) 
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Software Pipeline?! 

L.D ADD.D S.D 

DADDUI BNE 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D 

L.D ADD.D 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

… 

… 

Loop:     L.D         F0, 0(R1)        

              ADD.D    F4, F0, F2      

              S.D         F4, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  
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Software Pipeline 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D 

L.D 

Original iter  1 

Original iter  2 

Original iter  3 

Original iter  4 

New iter  1 

New iter  2 

New iter  3 

New iter  4 
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Software Pipelining 

Loop:     L.D         F0, 0(R1)        

              ADD.D    F4, F0, F2      

              S.D         F4, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  

Loop:     S.D         F4, 16(R1)        

              ADD.D    F4, F0, F2      

              L.D          F0, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  

• Advantages: achieves nearly the same effect as loop unrolling, but 

  without the code expansion – an unrolled loop may have inefficiencies 

  at the start and end of each iteration, while a sw-pipelined loop is 

  almost always in steady state – a sw-pipelined loop can also be unrolled 

  to reduce loop overhead 

 

• Disadvantages: does not reduce loop overhead, may require more 

  registers 



6 

Predication 

• A branch within a loop can be problematic to schedule 

 

• Control dependences are a problem because of the need 

  to re-fetch on a mispredict 

 

• For short loop bodies, control dependences can be 

  converted to data dependences by using  

  predicated/conditional instructions 



7 

Predicated or Conditional Instructions 

• The instruction has an additional operand that determines 

  whether the instr completes or gets converted into a no-op 

 

• Example: lwc  R1, 0(R2), R3    (load-word-conditional) 

  will load the word at address (R2) into R1 if R3 is non-zero; 

  if R3 is zero, the instruction becomes a no-op 

 

• Replaces a control dependence with a data dependence 

  (branches disappear) ; may need register copies for the 

  condition or for values used by both directions 

if (R1 == 0)  

   R2 = R2 + R4 

else  

   R6 = R3 + R5 

   R4 = R2 + R3 

R7 = !R1 ;  R8 = R2 ; 

R2 = R2 + R4   (predicated on R7) 

R6 = R3 + R5   (predicated on R1) 

R4 = R8 + R3   (predicated on R1)  
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Complications 

• Each instruction has one more input operand – more 

  register ports/bypassing 

 

• If the branch condition is not known, the instruction stalls 

  (remember, these are in-order processors) 

 

• Some implementations allow the instruction to continue 

  without the branch condition and squash/complete later in 

  the pipeline – wasted work 

 

• Increases register pressure, activity on functional units 

 

• Does not help if the br-condition takes a while to evaluate 
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Support for Speculation 

• In general, when we re-order instructions, register renaming 

  can ensure we do not violate register data dependences 

 

• However, we need hardware support 

 to ensure that an exception is raised at the correct point 

 to ensure that we do not violate memory dependences 

          st 

          br 

 

ld 
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Detecting Exceptions 

• Some exceptions require that the program be terminated 

  (memory protection violation), while other exceptions 

  require execution to resume (page faults) 

 

• For a speculative instruction, in the latter case, servicing  

  the exception only implies potential performance loss 

 

• In the former case, you want to defer servicing the 

  exception until you are sure the instruction is not speculative 

 

• Note that a speculative instruction needs a special opcode 

  to indicate that it is speculative 
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Program-Terminate Exceptions 

• When a speculative instruction experiences an exception, 

  instead of servicing it, it writes a special NotAThing value 

  (NAT) in the destination register 

 

• If a non-speculative instruction reads a NAT, it flags the 

  exception and the program terminates (it may not be 

  desireable that the error is caused by an array access, but 

  the segfault happens two procedures later) 

 

• Alternatively, an instruction (the sentinel) in the speculative 

  instruction’s original location checks the register value and 

  initiates recovery 
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Memory Dependence Detection 

• If a load is moved before a preceding store, we must 

  ensure that the store writes to a non-conflicting address, 

  else, the load has to re-execute 

 

• When the speculative load issues, it stores its address in 

  a table (Advanced Load Address Table in the IA-64) 

 

• If a store finds its address in the ALAT, it indicates that a 

  violation occurred for that address 

 

• A special instruction (the sentinel) in the load’s original 

  location checks to see if the address had a violation and  

  re-executes the load if necessary 
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Dynamic Vs. Static ILP 

• Static ILP: 

+ The compiler finds parallelism  no extra hw  

   higher clock speeds and lower power 

+ Compiler knows what is next  better global schedule 

-  Compiler can not react to dynamic events (cache misses) 

-  Can not re-order instructions unless you provide 

   hardware and extra instructions to detect violations 

   (eats into the low complexity/power argument) 

-  Static branch prediction is poor  even statically 

   scheduled processors use hardware branch predictors 

-  Building an optimizing compiler is easier said than done 

• A comparison of the Alpha, Pentium 4, and Itanium (statically 

  scheduled IA-64 architecture) shows that the Itanium is not 

  much better in terms of performance, clock speed or power 



14 

Control Hazards 

• In the 5-stage in-order processor: assume always taken 

  or assume always not taken; if the branch goes the other 

  way, squash mis-fetched instructions (momentarily, 

  forget about branch delay slots) 

 

• Modern in-order and out-of-order processors: dynamic 

  branch prediction; instead of a default not-taken 

  assumption, either predict not-taken, or predict  

  taken-to-X, or predict taken-to-Y 

 

• Branch predictor: a cache of recent branch outcomes 
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Pipeline without Branch Predictor 

IF (br) 

PC 

Reg Read 

Compare 

Br-target 

PC + 4 

In the 5-stage pipeline, a branch completes in two cycles  

If the branch went the wrong way, one incorrect instr is fetched  

One stall cycle per incorrect branch 
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Pipeline with Branch Predictor 

IF (br) 

PC 

Reg Read 

Compare 

Br-target 

In the 5-stage pipeline, a branch completes in two cycles  

If the branch went the wrong way, one incorrect instr is fetched  

One stall cycle per incorrect branch 

Branch 

Predictor 
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Branch Mispredict Penalty 

• Assume: no data or structural hazards; only control 

  hazards; every 5th instruction is a branch; branch 

  predictor accuracy is 90% 

 

• Slowdown = 1 / (1 + stalls per instruction) 

 

• Stalls per instruction = % branches x %mispreds x penalty 

                                    = 20% x 10% x 1 

                                    = 0.02 

 

• Slowdown = 1/1.02  ; if penalty = 20, slowdown = 1/1.4 
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1-Bit Bimodal Prediction 

• For each branch, keep track of what happened last time 

  and use that outcome as the prediction 

 

• What are prediction accuracies for branches 1 and 2 below: 

 

     while (1) { 

            for (i=0;i<10;i++) {                     branch-1 

                … 

            } 

            for (j=0;j<20;j++) {                     branch-2 

               … 

            } 

     } 
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2-Bit Bimodal Prediction 

• For each branch, maintain a 2-bit saturating counter: 

   if the branch is taken: counter = min(3,counter+1) 

   if the branch is not taken: counter = max(0,counter-1) 

 

• If (counter >= 2), predict taken, else predict not taken 

 

• Advantage: a few atypical branches will not influence the 

  prediction (a better measure of “the common case”) 

 

• Especially useful when multiple branches share the same 

  counter (some bits of the branch PC are used to index 

  into the branch predictor) 

 

• Can be easily extended to N-bits (in most processors, N=2) 



20 

Bimodal 1-Bit Predictor 

Branch PC 

10 bits 

Table of 

1K entries 

 

Each 

entry is 

a bit 

The table keeps track of what the branch did last time 
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Bimodal 2-Bit Predictor 

Branch PC 

10 bits Table of 

1K entries 

 

Each 

entry is 

a 2-bit 

sat. 

counter The table keeps track of the common-case 

 outcome for the branch 
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Correlating Predictors 

• Basic branch prediction: maintain a 2-bit saturating 

  counter for each entry (or use 10 branch PC bits to index 

  into one of 1024 counters) – captures the recent  

  “common case” for each branch 

 

• Can we take advantage of additional information? 

 If a branch recently went  01111, expect 0; if it 

    recently went  11101, expect 1; can we have a 

    separate counter for each case? 

 If the previous branches went  01, expect 0; if the 

    previous branches went 11, expect 1; can we have 

    a separate counter for each case? 

 

Hence, build correlating predictors 
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Global Predictor 

A single register that keeps track 

of recent history for all branches 

00110101 

Branch PC 

8 bits 

6 bits 

Table of 

16K entries 

of 2-bit 

saturating 

counters 

Also referred to as a two-level predictor 
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Local Predictor 

Branch PC 

Table of 

16K entries 

of 2-bit 

saturating 

counters 

Table of 64 entries of 14-bit 

histories for a single branch 

10110111011001 

Use 6 bits of branch PC to 

index into local history table 

14-bit history 

indexes into 

next level 

Also a two-level predictor that only 

uses local histories at the first level 
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Global Predictor 

Branch PC 

10 bits Table of 

1K entries 

 

Each 

entry is 

a 2-bit 

sat. 

counter The table keeps track of the common-case 

 outcome for the branch/history combo 

Global history 

XOR 
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Local Predictor 

Branch PC 

6 bits Table of 

1K entries 

 

Each 

entry is 

a 2-bit 

sat. 

counter 

The table keeps track of the common-case 

 outcome for the branch/local-history combo 

Local history 

10 bit entries 

XOR 

64 entries 

10 bits 
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Local/Global Predictors 

• Instead of maintaining a counter for each branch to 

  capture the common case, 

 

 Maintain a counter for each branch and surrounding pattern 

 If the surrounding pattern belongs to the branch being 

     predicted, the predictor is referred to as a local predictor 

 If the surrounding pattern includes neighboring branches, 

     the predictor is referred to as a global predictor 
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Tournament Predictors 

• A local predictor might work well for some branches or 

  programs, while a global predictor might work well for others 

 

• Provide one of each and maintain another predictor to 

  identify which predictor is best for each branch 

Tournament 

Predictor 

Branch PC 

Table of 2-bit 

saturating counters 

Local 

Predictor 

Global 

Predictor 

M 

U 

X 

Alpha 21264: 

1K entries in level-1 

1K entries in level-2 

 

4K entries 

12-bit global history 

 

4K entries 

 

Total capacity: ? 
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Branch Target Prediction 

• In addition to predicting the branch direction, we must 

  also predict the branch target address 

 

• Branch PC indexes into a predictor table; indirect branches 

  might be problematic 

 

• Most common indirect branch: return from a procedure – 

  can be easily handled with a stack of return addresses 
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Title 

• Bullet 


