Lecture 5: Pipeline Wrap-up, Static ILP

* Topics: multi-cycle ops, precise interrupts, compiler
scheduling, loop unrolling, software pipelining
(Sections C.5, 3.2)

* Please hand in Assignment 1 now

Multicycle Instructions

Integer unit

I

FP/integer multiply

iy

FP adder

T

FPfinteger divider

£ 2007 Elsavier, Inc. All rights resarved.

MEM wB

Functional unit Latency Initiation interval
Integer ALU 1 1
Data memory 2 1
FP add 4 1
FP multiply 7 1
FP divide 25 25

Effects of Multicycle Instructions

« Structural hazards if the unit is not fully pipelined (divider)

* Frequent RAW hazard stalls

 Potentially multiple writes to the register file in a cycle
 WAW hazards because of out-of-order instr completion
 Imprecise exceptions because of 0-0-0 instr completion
Note: Can also increase the “width” of the processor: handle

multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etg:.

Precise Exceptions

* On an exception:

» must save PC of instruction where program must resume

» all instructions after that PC that might be in the pipeline
must be converted to NOPs (other instructions continue
to execute and may raise exceptions of their own)

» temporary program state not in memory (in other words,
registers) has to be stored in memory

» potential problems if a later instruction has already
modified memory or registers

* A processor that fulfils all the above conditions is said to
provide precise exceptions (useful for debugging and of
course, correctness)

Dealing with these Effects

 Multiple writes to the register file: increase the number of
ports, stall one of the writers during ID, stall one of the
writers during WB (the stall will propagate)

« WAW hazards: detect the hazard during ID and stall the
later instruction

 Imprecise exceptions: buffer the results if they complete
early or save more pipeline state so that you can return to
exactly the same state that you left at

ILP

* Instruction-level parallelism: overlap among instructions:
pipelining or multiple instruction execution

« What determines the degree of ILP?
» dependences: property of the program
» hazards: property of the pipeline

Static vs Dynamic Scheduling

« Arguments against dynamic scheduling:
» reqguires complex structures to identify independent
Instructions (scoreboards, issue queue)
high power consumption
low clock speed
high design and verification effort
» the compiler can “easily” compute instruction latencies
and dependences — complex software is always
preferred to complex hardware (?)

Loop Scheduling

* Revert back to the 5-stage in-order pipeline
* The compiler’s job is to minimize stalls

* Focus on loops: account for most cycles, relatively easy
to analyze and optimize

* Recall: a load has a two-cycle latency (1 stall cycle for the
consumer that immediately follows), FP ALU feeding
another - 3 stall cycles, FP ALU feeding a store = 2
stall cycles, int ALU feeding a branch - 1 stall cycle,
one delay slot after a branch

Loop Example

for (i=1000; i>0; i--)

x[i] = X[i] + s; Source code
Loop: L.D FO, O(R1) ; FO = array element
ADD.D F4, FO, F2 ; add scalar
S.D F4, O(R1) ; store result
DADDUI R1,R1,#-8 ; decrement address pointer
BNE R1, R2, Loop ;branchif R1!=R2

NOP

Assembly code

Loop Example

for (i=1000; i>0; i--)

x[i] = X[i] + s: Source code

Loop: L.D FO, O(R1)
ADD.D F4, FO, F2
S.D F4, O(R1)
DADDUI R1,R1,# -8
BNE R1, R2, Loop
NOP

; FO = array element

; add scalar

; store result

; decrement address pointer
; branch if R1 1= R2

Loop: L.D FO, O(R1)
stall
ADD.D F4, FO, F2
stall
stall
S.D F4, O(R1)
DADDUI R1, R1,# -8
stall
BNE R1, R2, Loop
stall

; FO = array element

; add scalar

; store result

; decrement address pointer

 branch if R1 1= R2

Assembly code

10-cycle
schedule

10

Smart Schedule

Loop: L.D FO, O(R1) Loop: L.D FO, O(R1)
stall DADDUI R1, R1,# -8
ADD.D F4, FO, F2 . ADD.D F4, FO, F2
stall stall
stall BNE R1, R2, Loop
S.D F4, 0(R1) S.D F4, 8(R1)
DADDUI R1, R1,# -8
stall
BNE R1, R2, Loop
stall

* By re-ordering instructions, it takes 6 cycles per iteration instead of 10
* We were able to violate an anti-dependence easily because an
Immediate was involved
 Loop overhead (instrs that do book-keeping for the loop): 2
Actual work (the Id, add.d, and s.d): 3 instrs

Can we somehow get execution time to be 3 cycles per iteration? "

Loop Unrolling

Loop: L.D FO, O(R1)
ADD.D F4, FO, F2
S.D F4, O(R1)
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D F8, -8(R1)
L.D F10,-16(R1)
ADD.D F12, F10, F2
S.D F12, -16(R1)

L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)

DADDUI R1, R1, #-32
BNE R1,R2, Loop

* Loop overhead: 2 instrs; Work: 12 instrs
» How long will the above schedule take to complete?

Scheduled and Unrolled Loop

Loop: L.D FO, O(R1)
L.D F6, -8(R1)
L.D F10,-16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, O(R1)
S.D F8, -8(R1)
DADDUI R1, R1, #-32
S.D F12, 16(R1)
BNE R1,R2, Loop
S.D F16, 8(R1)

« Execution time: 14 cycles or 3.5 cycles per original iteration

Loop Unrolling

* Increases program size
* Requires more registers
* To unroll an n-iteration loop by degree k, we will need (n/k)

iterations of the larger loop, followed by (n mod k) iterations
of the original loop

14

Automating Loop Unrolling

* Determine the dependences across iterations: in the
example, we knew that loads and stores in different iterations
did not conflict and could be re-ordered

* Determine if unrolling will help — possible only if iterations
are independent

* Determine address offsets for different loads/stores

* Dependency analysis to schedule code without introducing
hazards; eliminate name dependences by using additional
registers

15

Superscalar Pipelines

Integer pipeline FP pipeline

Handles L.D, S.D, ADDUI, BNE Handles ADD.D

* What is the schedule with an unroll degree of 47

16

Superscalar Pipelines

Integer pipeline FP pipeline
Loop: L.D FO,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1) ADD.D F4,F0,F2

L.D F14,-24(R1) ADD.D F8,F6,F2

L.D F18,-32(R1) ADD.D F12,F10,F2

S.D F4,0(R1) ADD.D F16,F14,F2

S.D F8,-8(R1) ADD.D F20,F18,F2

S.D F12,-16(R1)

DADDUI R1,R1,# -40

S.D F16,16(R1)

BNE R1,R2,Loop

S.D F20,8(R1)

* Need unroll by degree 5 to eliminate stalls
* The compiler may specify instructions that can be issued as one packet

* The compiler may specify a fixed number of instructions in each packet:
Very Large Instruction Word (VLIW) 17

Software Pipeline?!

ADD.D S.D
DADDUI BNE
ADD.D S.D
DADDUI BNE
ADD.D S.D
DADDUI BNE
ADD.D S.D
DADDUI BNE
Loop: L.D FO, O(R1) ADD.D
QPDD'D Ej: gé)F,le)z DADDUI BNE
DADDUI R1, R1,# -8 Py
BNE R1, R2, Loop
DADDUI BNE 18

Software Pipeline

Original iter 2

<— QOriginal iter 3

New iter 1

T

New iter 2

T

New iter 3 T

New iter 4

19

Software Pipelining

Loop: L.D FO, O(R1) Loop: S.D F4, 16(R1)
ADD.D F4, FO, F2 ADD.D F4, FO, F2
S.D F4, O(R1) I L.D FO, O(R1)
DADDUI R1, R1,# -8 DADDUI R1, R1,# -8
BNE R1, R2, Loop BNE R1, R2, Loop

* Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion — an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is

almost always in steady state — a sw-pipelined loop can also be unrolled
to reduce loop overhead

 Disadvantages: does not reduce loop overhead, may require more
registers

20

Title

* Bullet

21

