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Lecture 5: Pipeline Wrap-up, Static ILP 

• Topics: multi-cycle ops, precise interrupts, compiler 

   scheduling, loop unrolling, software pipelining 

   (Sections  C.5, 3.2) 

 

• Please hand in Assignment 1 now 
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Multicycle Instructions 

Functional unit Latency Initiation interval 

Integer ALU 1 1 

Data memory 2 1 

FP add 4 1 

FP multiply 7 1 

FP divide 25 25 
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Effects of Multicycle Instructions 

• Structural hazards if the unit is not fully pipelined (divider) 

 

• Frequent RAW hazard stalls 

 

• Potentially multiple writes to the register file in a cycle 

 

• WAW hazards because of out-of-order instr completion  

 

• Imprecise exceptions because of o-o-o instr completion 

 

Note: Can also increase the “width” of the processor: handle 

 multiple instructions at the same time: for example, fetch 

 two instructions, read registers for both, execute both, etc. 
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Precise Exceptions 

• On an exception: 

 must save PC of instruction where program must resume 

 all instructions after that PC that might be in the pipeline 

    must be converted to NOPs (other instructions continue 

    to execute and may raise exceptions of their own) 

 temporary program state not in memory (in other words, 

    registers) has to be stored in memory 

 potential problems if a later instruction has already 

    modified memory or registers 

 

• A processor that fulfils all the above conditions is said to 

  provide precise exceptions (useful for debugging and of 

  course, correctness) 



5 

Dealing with these Effects 

• Multiple writes to the register file: increase the number of 

  ports, stall one of the writers during ID, stall one of the 

  writers during WB (the stall will propagate) 

 

• WAW hazards: detect the hazard during ID and stall the 

  later instruction 

 

• Imprecise exceptions: buffer the results if they complete 

  early or save more pipeline state so that you can return to 

  exactly the same state that you left at 
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ILP 

• Instruction-level parallelism: overlap among instructions: 

  pipelining or multiple instruction execution 

 

• What determines the degree of ILP? 

 dependences: property of the program 

 hazards: property of the pipeline 
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Static vs Dynamic Scheduling 

• Arguments against dynamic scheduling: 

 requires complex structures to identify independent 

    instructions (scoreboards, issue queue) 

 high power consumption 

 low clock speed 

 high design and verification effort 

 the compiler can “easily” compute instruction latencies 

    and dependences – complex software is always 

    preferred to complex hardware (?) 
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Loop Scheduling 

• Revert back to the 5-stage in-order pipeline 

 

• The compiler’s job is to minimize stalls 

 

• Focus on loops: account for most cycles, relatively easy 

  to analyze and optimize 

 

• Recall: a load has a two-cycle latency (1 stall cycle for the 

  consumer that immediately follows), FP ALU feeding 

  another  3 stall cycles, FP ALU feeding a store  2 

  stall cycles, int ALU feeding a branch  1 stall cycle, 

  one delay slot after a branch 
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Loop Example 

for (i=1000; i>0; i--) 

    x[i] = x[i] + s; 

Loop:     L.D         F0, 0(R1)          ; F0 = array element 

              ADD.D    F4, F0, F2        ; add scalar 

              S.D         F4, 0(R1)          ; store result 

              DADDUI  R1, R1,# -8      ; decrement address pointer 

              BNE        R1, R2, Loop    ; branch if R1 != R2 

              NOP 

Source code 

Assembly code 
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Loop Example 

for (i=1000; i>0; i--) 

    x[i] = x[i] + s; 

Loop:     L.D         F0, 0(R1)          ; F0 = array element 

              ADD.D    F4, F0, F2        ; add scalar 

              S.D         F4, 0(R1)          ; store result 

              DADDUI  R1, R1,# -8      ; decrement address pointer 

              BNE        R1, R2, Loop    ; branch if R1 != R2 

              NOP 

Source code 

Assembly code 

Loop:     L.D         F0, 0(R1)          ; F0 = array element 

              stall 

              ADD.D    F4, F0, F2        ; add scalar 

              stall 

              stall 

              S.D         F4, 0(R1)          ; store result 

              DADDUI  R1, R1,# -8      ; decrement address pointer 

              stall 

              BNE        R1, R2, Loop    ; branch if R1 != R2 

              stall 

10-cycle 

schedule 
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Smart Schedule 

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10 

• We were able to violate an anti-dependence easily because an 

  immediate was involved 

• Loop overhead (instrs that do book-keeping for the loop): 2 

  Actual work (the ld, add.d, and s.d): 3 instrs 

  Can we somehow get execution time to be 3 cycles per iteration? 

Loop:     L.D         F0, 0(R1)      

              stall 

              ADD.D    F4, F0, F2    

              stall 

              stall 

              S.D         F4, 0(R1)      

              DADDUI  R1, R1,# -8  

              stall 

              BNE        R1, R2, Loop 

              stall 

Loop:     L.D         F0, 0(R1)      

              DADDUI  R1, R1,# -8 

              ADD.D    F4, F0, F2    

              stall 

              BNE        R1, R2, Loop 

              S.D         F4, 8(R1)      
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Loop Unrolling 

Loop:     L.D         F0, 0(R1)  

              ADD.D    F4, F0, F2    

              S.D         F4, 0(R1) 

              L.D         F6, -8(R1) 

              ADD.D    F8, F6, F2 

              S.D         F8, -8(R1) 

              L.D         F10,-16(R1) 

              ADD.D    F12, F10, F2 

              S.D         F12, -16(R1) 

              L.D          F14, -24(R1) 

              ADD.D    F16, F14, F2 

              S.D          F16, -24(R1) 

              DADDUI  R1, R1, #-32 

              BNE        R1,R2, Loop 

• Loop overhead: 2 instrs; Work: 12 instrs 

• How long will the above schedule take to complete? 
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Scheduled and Unrolled Loop 

Loop:     L.D         F0, 0(R1)  

              L.D         F6, -8(R1) 

              L.D         F10,-16(R1) 

              L.D          F14, -24(R1) 

              ADD.D    F4, F0, F2   

              ADD.D    F8, F6, F2  

              ADD.D    F12, F10, F2 

              ADD.D    F16, F14, F2 

              S.D         F4, 0(R1) 

              S.D         F8, -8(R1) 

              DADDUI  R1, R1, # -32 

              S.D         F12, 16(R1) 

              BNE        R1,R2, Loop 

              S.D         F16, 8(R1)             

• Execution time: 14 cycles or 3.5 cycles per original iteration 
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Loop Unrolling 

• Increases program size 

 

• Requires more registers 

 

• To unroll an n-iteration loop by degree k, we will need (n/k)  

  iterations of the larger loop, followed by (n mod k) iterations 

  of the original loop 
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Automating Loop Unrolling 

• Determine the dependences across iterations: in the 

  example, we knew that loads and stores in different iterations 

  did not conflict and could be re-ordered 

 

• Determine if unrolling will help – possible only if iterations 

  are independent 

 

• Determine address offsets for different loads/stores 

 

• Dependency analysis to schedule code without introducing 

  hazards; eliminate name dependences by using additional 

  registers 
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Superscalar Pipelines 

                 Integer pipeline                      FP pipeline 

 

      Handles L.D, S.D, ADDUI, BNE       Handles ADD.D 

• What is the schedule with an unroll degree of 4? 
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Superscalar Pipelines 

                 Integer pipeline                  FP pipeline 

Loop:        L.D         F0,0(R1) 

                 L.D         F6,-8(R1) 

                 L.D         F10,-16(R1)      ADD.D   F4,F0,F2 

                 L.D         F14,-24(R1)      ADD.D   F8,F6,F2 

                 L.D         F18,-32(R1)      ADD.D   F12,F10,F2 

                 S.D         F4,0(R1)           ADD.D   F16,F14,F2 

                 S.D         F8,-8(R1)          ADD.D   F20,F18,F2 

                 S.D         F12,-16(R1) 

                 DADDUI  R1,R1,# -40 

                 S.D         F16,16(R1) 

                 BNE        R1,R2,Loop 

                 S.D          F20,8(R1) 

• Need unroll by degree 5 to eliminate stalls 

• The compiler may specify instructions that can be issued as one packet 

• The compiler may specify a fixed number of instructions in each packet: 

  Very Large Instruction Word (VLIW) 
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Software Pipeline?! 

L.D ADD.D S.D 

DADDUI BNE 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D 

L.D ADD.D 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

DADDUI BNE 

… 

… 

Loop:     L.D         F0, 0(R1)        

              ADD.D    F4, F0, F2      

              S.D         F4, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  
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Software Pipeline 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D S.D 

L.D ADD.D 

L.D 

Original iter  1 

Original iter  2 

Original iter  3 

Original iter  4 

New iter  1 

New iter  2 

New iter  3 

New iter  4 
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Software Pipelining 

Loop:     L.D         F0, 0(R1)        

              ADD.D    F4, F0, F2      

              S.D         F4, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  

Loop:     S.D         F4, 16(R1)        

              ADD.D    F4, F0, F2      

              L.D          F0, 0(R1)        

              DADDUI  R1, R1,# -8   

              BNE        R1, R2, Loop  

• Advantages: achieves nearly the same effect as loop unrolling, but 

  without the code expansion – an unrolled loop may have inefficiencies 

  at the start and end of each iteration, while a sw-pipelined loop is 

  almost always in steady state – a sw-pipelined loop can also be unrolled 

  to reduce loop overhead 

 

• Disadvantages: does not reduce loop overhead, may require more 

  registers 
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Title 

• Bullet 


