
1

Lecture 5: Pipeline Wrap-up, Static ILP

• Topics: multi-cycle ops, precise interrupts, compiler

 scheduling, loop unrolling, software pipelining

 (Sections C.5, 3.2)

• Please hand in Assignment 1 now

2

Multicycle Instructions

Functional unit Latency Initiation interval

Integer ALU 1 1

Data memory 2 1

FP add 4 1

FP multiply 7 1

FP divide 25 25

3

Effects of Multicycle Instructions

• Structural hazards if the unit is not fully pipelined (divider)

• Frequent RAW hazard stalls

• Potentially multiple writes to the register file in a cycle

• WAW hazards because of out-of-order instr completion

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle

 multiple instructions at the same time: for example, fetch

 two instructions, read registers for both, execute both, etc.

4

Precise Exceptions

• On an exception:

 must save PC of instruction where program must resume

 all instructions after that PC that might be in the pipeline

 must be converted to NOPs (other instructions continue

 to execute and may raise exceptions of their own)

 temporary program state not in memory (in other words,

 registers) has to be stored in memory

 potential problems if a later instruction has already

 modified memory or registers

• A processor that fulfils all the above conditions is said to

 provide precise exceptions (useful for debugging and of

 course, correctness)

5

Dealing with these Effects

• Multiple writes to the register file: increase the number of

 ports, stall one of the writers during ID, stall one of the

 writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the

 later instruction

• Imprecise exceptions: buffer the results if they complete

 early or save more pipeline state so that you can return to

 exactly the same state that you left at

6

ILP

• Instruction-level parallelism: overlap among instructions:

 pipelining or multiple instruction execution

• What determines the degree of ILP?

 dependences: property of the program

 hazards: property of the pipeline

7

Static vs Dynamic Scheduling

• Arguments against dynamic scheduling:

 requires complex structures to identify independent

 instructions (scoreboards, issue queue)

 high power consumption

 low clock speed

 high design and verification effort

 the compiler can “easily” compute instruction latencies

 and dependences – complex software is always

 preferred to complex hardware (?)

8

Loop Scheduling

• Revert back to the 5-stage in-order pipeline

• The compiler’s job is to minimize stalls

• Focus on loops: account for most cycles, relatively easy

 to analyze and optimize

• Recall: a load has a two-cycle latency (1 stall cycle for the

 consumer that immediately follows), FP ALU feeding

 another  3 stall cycles, FP ALU feeding a store  2

 stall cycles, int ALU feeding a branch  1 stall cycle,

 one delay slot after a branch

9

Loop Example

for (i=1000; i>0; i--)

 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element

 ADD.D F4, F0, F2 ; add scalar

 S.D F4, 0(R1) ; store result

 DADDUI R1, R1,# -8 ; decrement address pointer

 BNE R1, R2, Loop ; branch if R1 != R2

 NOP

Source code

Assembly code

10

Loop Example

for (i=1000; i>0; i--)

 x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element

 ADD.D F4, F0, F2 ; add scalar

 S.D F4, 0(R1) ; store result

 DADDUI R1, R1,# -8 ; decrement address pointer

 BNE R1, R2, Loop ; branch if R1 != R2

 NOP

Source code

Assembly code

Loop: L.D F0, 0(R1) ; F0 = array element

 stall

 ADD.D F4, F0, F2 ; add scalar

 stall

 stall

 S.D F4, 0(R1) ; store result

 DADDUI R1, R1,# -8 ; decrement address pointer

 stall

 BNE R1, R2, Loop ; branch if R1 != R2

 stall

10-cycle

schedule

11

Smart Schedule

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10

• We were able to violate an anti-dependence easily because an

 immediate was involved

• Loop overhead (instrs that do book-keeping for the loop): 2

 Actual work (the ld, add.d, and s.d): 3 instrs

 Can we somehow get execution time to be 3 cycles per iteration?

Loop: L.D F0, 0(R1)

 stall

 ADD.D F4, F0, F2

 stall

 stall

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 stall

 BNE R1, R2, Loop

 stall

Loop: L.D F0, 0(R1)

 DADDUI R1, R1,# -8

 ADD.D F4, F0, F2

 stall

 BNE R1, R2, Loop

 S.D F4, 8(R1)

12

Loop Unrolling

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 L.D F6, -8(R1)

 ADD.D F8, F6, F2

 S.D F8, -8(R1)

 L.D F10,-16(R1)

 ADD.D F12, F10, F2

 S.D F12, -16(R1)

 L.D F14, -24(R1)

 ADD.D F16, F14, F2

 S.D F16, -24(R1)

 DADDUI R1, R1, #-32

 BNE R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs

• How long will the above schedule take to complete?

13

Scheduled and Unrolled Loop

Loop: L.D F0, 0(R1)

 L.D F6, -8(R1)

 L.D F10,-16(R1)

 L.D F14, -24(R1)

 ADD.D F4, F0, F2

 ADD.D F8, F6, F2

 ADD.D F12, F10, F2

 ADD.D F16, F14, F2

 S.D F4, 0(R1)

 S.D F8, -8(R1)

 DADDUI R1, R1, # -32

 S.D F12, 16(R1)

 BNE R1,R2, Loop

 S.D F16, 8(R1)

• Execution time: 14 cycles or 3.5 cycles per original iteration

14

Loop Unrolling

• Increases program size

• Requires more registers

• To unroll an n-iteration loop by degree k, we will need (n/k)

 iterations of the larger loop, followed by (n mod k) iterations

 of the original loop

15

Automating Loop Unrolling

• Determine the dependences across iterations: in the

 example, we knew that loads and stores in different iterations

 did not conflict and could be re-ordered

• Determine if unrolling will help – possible only if iterations

 are independent

• Determine address offsets for different loads/stores

• Dependency analysis to schedule code without introducing

 hazards; eliminate name dependences by using additional

 registers

16

Superscalar Pipelines

 Integer pipeline FP pipeline

 Handles L.D, S.D, ADDUI, BNE Handles ADD.D

• What is the schedule with an unroll degree of 4?

17

Superscalar Pipelines

 Integer pipeline FP pipeline

Loop: L.D F0,0(R1)

 L.D F6,-8(R1)

 L.D F10,-16(R1) ADD.D F4,F0,F2

 L.D F14,-24(R1) ADD.D F8,F6,F2

 L.D F18,-32(R1) ADD.D F12,F10,F2

 S.D F4,0(R1) ADD.D F16,F14,F2

 S.D F8,-8(R1) ADD.D F20,F18,F2

 S.D F12,-16(R1)

 DADDUI R1,R1,# -40

 S.D F16,16(R1)

 BNE R1,R2,Loop

 S.D F20,8(R1)

• Need unroll by degree 5 to eliminate stalls

• The compiler may specify instructions that can be issued as one packet

• The compiler may specify a fixed number of instructions in each packet:

 Very Large Instruction Word (VLIW)

18

Software Pipeline?!

L.D ADD.D S.D

DADDUI BNE

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D ADD.D

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

…

…

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

19

Software Pipeline

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D

Original iter 1

Original iter 2

Original iter 3

Original iter 4

New iter 1

New iter 2

New iter 3

New iter 4

20

Software Pipelining

Loop: L.D F0, 0(R1)

 ADD.D F4, F0, F2

 S.D F4, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

Loop: S.D F4, 16(R1)

 ADD.D F4, F0, F2

 L.D F0, 0(R1)

 DADDUI R1, R1,# -8

 BNE R1, R2, Loop

• Advantages: achieves nearly the same effect as loop unrolling, but

 without the code expansion – an unrolled loop may have inefficiencies

 at the start and end of each iteration, while a sw-pipelined loop is

 almost always in steady state – a sw-pipelined loop can also be unrolled

 to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more

 registers

21

Title

• Bullet

