
1

Lecture 4: Advanced Pipelines

• Data hazards, control hazards, multi-cycle in-order pipelines

 (Appendix C.4-C.8)

2

A 5-Stage Pipeline

Source: H&P textbook

3

Hazards

• Structural hazards: different instructions in different stages

 (or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it

 needs a value that has not yet been generated by an

 earlier instruction

• Control hazard: fetch cannot continue because it does

 not know the outcome of an earlier branch – special case

 of a data hazard – separate category because they are

 treated in different ways

4

Data Hazards

SUB R2  R1, R3

Uses R2

Uses R2

Uses R2

Uses R2

5

Bypassing

• Some data hazard stalls can be eliminated: bypassing

6

Bypassing

7

Pipeline Implementation

• Signals for the muxes have to be generated – some of this can happen during ID

• Need look-up tables to identify situations that merit bypassing/stalling – the

 number of inputs to the muxes goes up

8

Situation Example code Action

No dependence LD R1, 45(R2)

DADD R5, R6, R7

DSUB R8, R6, R7

OR R9, R6, R7

No hazards

Dependence

requiring stall

LD R1, 45(R2)

DADD R5, R1, R7

DSUB R8, R6, R7

OR R9, R6, R7

Detect use of R1 during ID of DADD

and stall

Dependence

overcome by

forwarding

LD R1, 45(R2)

DADD R5, R6, R7

DSUB R8, R1, R7

OR R9, R6, R7

Detect use of R1 during ID of DSUB

and set mux control signal that accepts

result from bypass path

Dependence with

accesses in order

LD R1, 45(R2)

DADD R5, R6, R7

DSUB R8, R6, R7

OR R9, R1, R7

No action required

Detecting Control Signals

9

Example

add R1, R2, R3

lw R4, 8(R1)

10

Example

 lw R1, 8(R2)

 lw R4, 8(R1)

11

Example

 lw R1, 8(R2)

 sw R1, 8(R3)

12

Summary

• For the 5-stage pipeline, bypassing can eliminate delays

 between the following example pairs of instructions:

 add/sub R1, R2, R3

 add/sub/lw/sw R4, R1, R5

 lw R1, 8(R2)

 sw R1, 4(R3)

• The following pairs of instructions will have intermediate

 stalls:

 lw R1, 8(R2)

 add/sub/lw R3, R1, R4 or sw R3, 8(R1)

 fmul F1, F2, F3

 fadd F5, F1, F4

13

Control Hazards

• Simple techniques to handle control hazard stalls:

 for every branch, introduce a stall cycle (note: every

 6th instruction is a branch!)

 assume the branch is not taken and start fetching the

 next instruction – if the branch is taken, need hardware

 to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and

 execute it anyway – if the instruction turns out to be

 on the correct path, useful work was done – if the

 instruction turns out to be on the wrong path,

 hopefully program state is not lost

14

Branch Delay Slots

15

Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction

 completes every cycle (total cycles ~ num instructions)

  speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by

 during which no instruction completes, and then the stalled

 instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

16

Pipelining Limits

A B C

A B C

A B C D E F

A B C D E F

Assume that there is a dependence where the final result of the

first instruction is required before starting the second instruction

Gap between indep instrs: T + Tovh

Gap between dep instrs: T + Tovh

Gap between indep instrs:

 T/3 + Tovh

Gap between dep instrs:

 T + 3Tovh

Gap between indep instrs:

 T/6 + Tovh

Gap between dep instrs:

 T + 6Tovh

17

Multicycle Instructions

Functional unit Latency Initiation interval

Integer ALU 1 1

Data memory 2 1

FP add 4 1

FP multiply 7 1

FP divide 25 25

18

Effects of Multicycle Instructions

• Structural hazards if the unit is not fully pipelined (divider)

• Frequent RAW hazard stalls

• Potentially multiple writes to the register file in a cycle

• WAW hazards because of out-of-order instr completion

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle

 multiple instructions at the same time: for example, fetch

 two instructions, read registers for both, execute both, etc.

19

Precise Exceptions

• On an exception:

 must save PC of instruction where program must resume

 all instructions after that PC that might be in the pipeline

 must be converted to NOPs (other instructions continue

 to execute and may raise exceptions of their own)

 temporary program state not in memory (in other words,

 registers) has to be stored in memory

 potential problems if a later instruction has already

 modified memory or registers

• A processor that fulfils all the above conditions is said to

 provide precise exceptions (useful for debugging and of

 course, correctness)

20

Dealing with these Effects

• Multiple writes to the register file: increase the number of

 ports, stall one of the writers during ID, stall one of the

 writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the

 later instruction

• Imprecise exceptions: buffer the results if they complete

 early or save more pipeline state so that you can return to

 exactly the same state that you left at

21

Title

• Bullet

