
1

Lecture 3: Pipelining Basics

• Today: chapter 1 wrap-up, basic pipelining implementation

 (Sections C.1 - C.4)

• Reminders:

 Sign up for the class mailing list

 First assignment is on-line, due next Tuesday

 TA office hours: Ali Shafiee, Monday 3-4pm

 Class notes

2

Defining Fault, Error, and Failure

• A fault produces a latent error; it becomes effective when

 activated; it leads to failure when the observed actual

 behavior deviates from the ideal specified behavior

• Example I : a programming mistake is a fault; the buggy

 code is the latent error; when the code runs, it is effective;

 if the buggy code influences program output/behavior, a

 failure occurs

• Example II : an alpha particle strikes DRAM (fault); if it

 changes the memory bit, it produces a latent error; when

 the value is read, the error becomes effective; if program

 output deviates, failure occurs

3

Defining Reliability and Availability

• A system toggles between

 Service accomplishment: service matches specifications

 Service interruption: services deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment

 and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches

 specifications, expressed as MTTF / (MTTF + MTTR)

4

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the

 common case fast, do not waste resources on a component

 that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an

 enhancement is limited by the fraction of time the

 enhancement comes into play

• Example: a web server spends 40% of time in the CPU

 and 60% of time doing I/O – a new processor that is ten

 times faster results in a 36% reduction in execution time

 (speedup of 1.56) – Amdahl’s Law states that maximum

 execution time reduction is 40% (max speedup of 1.66)

5

Principle of Locality

• Most programs are predictable in terms of instructions

 executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution

 time in only 10% of the code

• Temporal locality: a program will shortly re-visit X

• Spatial locality: a program will shortly visit X+1

6

Exploit Parallelism

• Most operations do not depend on each other – hence,

 execute them in parallel

• At the circuit level, simultaneously access multiple ways

 of a set-associative cache

• At the organization level, execute multiple instructions at

 the same time

• At the system level, execute a different program while one

 is waiting on I/O

7

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages

B C

A B C

A B C

A B C

Unpipelined

Pipelined

8

Quantitative Effects

• As a result of pipelining:

 Time in ns per instruction goes up

 Number of cycles per instruction goes up (note the

 increase in clock speed)

 Total execution time goes down, resulting in lower

 time per instruction

 Average cycles per instruction increases slightly

 Under ideal conditions, speedup

 = ratio of elapsed times between successive instruction

 completions

 = number of pipeline stages = increase in clock speed

9

A 5-Stage Pipeline

Source: H&P textbook

10

A 5-Stage Pipeline

 Use the PC to access the I-cache and increment PC by 4

11

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume

branches take 2 cyc (there is enough work that branches can easily take more)

12

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

13

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

14

A 5-Stage Pipeline

Write result of ALU computation or load into register file

15

Conflicts/Problems

• I-cache and D-cache are accessed in the same cycle – it

 helps to implement them separately

• Registers are read and written in the same cycle – easy to

 deal with if register read/write time equals cycle time/2

 (else, use bypassing)

• Branch target changes only at the end of the second stage

 -- what do you do in the meantime?

• Data between stages get latched into registers (overhead

 that increases latency per instruction)

16

Hazards

• Structural hazards: different instructions in different stages

 (or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it

 needs a value that has not yet been generated by an

 earlier instruction

• Control hazard: fetch cannot continue because it does

 not know the outcome of an earlier branch – special case

 of a data hazard – separate category because they are

 treated in different ways

17

Structural Hazards

• Example: a unified instruction and data cache

 stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed

 until a cycle is found when the resource is free these

 are pipeline bubbles

• Structural hazards are easy to eliminate – increase the

 number of resources (for example, implement a separate

 instruction and data cache)

18

Data Hazards

Source: H&P textbook

19

Bypassing

• Some data hazard stalls can be eliminated: bypassing

20

Example

add R1, R2, R3

lw R4, 8(R1)

21

Example

 lw R1, 8(R2)

 lw R4, 8(R1)

22

Example

 lw R1, 8(R2)

 sw R1, 8(R3)

23

Summary

• For the 5-stage pipeline, bypassing can eliminate delays

 between the following example pairs of instructions:

 add/sub R1, R2, R3

 add/sub/lw/sw R4, R1, R5

 lw R1, 8(R2)

 sw R1, 4(R3)

• The following pairs of instructions will have intermediate

 stalls:

 lw R1, 8(R2)

 add/sub/lw R3, R1, R4 or sw R3, 8(R1)

 fmul F1, F2, F3

 fadd F5, F1, F4

24

Title

• Bullet

