Lecture 3: Pipelining Basics

 Today: chapter 1 wrap-up, basic pipelining implementation
(Sections C.1 - C.4)

* Reminders:
= Sign up for the class mailing list

= First assignment is on-line, due next Tuesday
= TA office hours: Ali Shafiee, Monday 3-4pm

= Class notes



Defining Fault, Error, and Failure

* A fault produces a latent error; it becomes effective when
activated, it leads to failure when the observed actual
behavior deviates from the ideal specified behavior

- Example | : a programming mistake is a fault; the buggy
code is the latent error; when the code runs, it is effective;
If the buggy code influences program output/behavior, a
failure occurs

- Example Il : an alpha particle strikes DRAM (fault); if it
changes the memory bit, it produces a latent error; when
the value is read, the error becomes effective; if program

output deviates, failure occurs :



Defining Reliability and Availability

* A system toggles between
» Service accomplishment: service matches specifications
» Service interruption: services deviates from specs

* The toggle is caused by failures and restorations

* Reliability measures continuous service accomplishment
and is usually expressed as mean time to failure (MTTF)

* Availability measures fraction of time that service matches
specifications, expressed as MTTF/ (MTTF + MTTR)



Amdahl’'s Law

* Architecture design is very bottleneck-driven — make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

 Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

« Example: a web server spends 40% of time in the CPU
and 60% of time doing 1/O — a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) — Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66) \



Principle of Locality

» Most programs are predictable in terms of instructions
executed and data accessed

* The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

« Temporal locality: a program will shortly re-visit X

- Spatial locality: a program will shortly visit X+1



Exploit Parallelism

* Most operations do not depend on each other — hence,
execute them in parallel

* At the circuit level, simultaneously access multiple ways
of a set-associative cache

* At the organization level, execute multiple instructions at
the same time

* At the system level, execute a different program while one
IS waiting on I/O



The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined



Quantitative Effects

* As a result of pipelining:

» Time In ns per instruction goes up

» Number of cycles per instruction goes up (note the
Increase in clock speed)

» Total execution time goes down, resulting in lower
time per instruction

» Average cycles per instruction increases slightly

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed



A 5-Stage Pipeline

s e =
tep | piin pks
l— ”FA‘; ,;' DM H —Reg
J: \}J: 4,‘! [
| —g Z/: I
" ~ heg | %
1 A

Source: H&P textbook 9



A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

Time (in clock cycles)

CC 1

IM

|

IM

e BN W
=l s
e -
ey el
) . bl

CC5 cC &6
—Reg
o H‘ s
Z/_
ey
=y

10



A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

Time (in clock cycles)

CC 1 CcC3 CcC 4 CC>5 CC 6

M H '_t”é; | ‘g H DM ) [ g 4
U —y (= ‘_ =
— 1 g | .

J;_r

N
L

|
-
7 |
o
=

" = EF
| —y 129
- mx— "
| —l




A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Time (in clock cyclesy

e s s
JE=t =)

1 = U3
=

) g vl

CcCS5 CcC 6
—Reg
- H‘ [ Reg |
Z/ i
A i
- R—
L] 12




A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Time (in clock cyclesy

CC 1

IM

|

ccz2
U [ Reg ‘

IM

I I
(= {_ '

e -

C=Ae
) g vl

CcCS5 CcC 6
—Reg
o H‘ —
Z/ i
el I
- R—
i ) a 13




A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cycles)

CC 1 cCc2 CcC3 cCc4 CC>5 CCeo6
M D [ Reg ‘ II% H DM Reg :
IM H — Reg

[l
u ksl |2 b ’—1 L
[ Ri

IM

" = EF
| —y 1=
- fn—
/ 14




Conflicts/Problems

* |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

* Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2
(else, use bypassing)

* Branch target changes only at the end of the second stage
-- what do you do in the meantime?

- Data between stages get latched into registers (overhead
that increases latency per instruction)

15



Hazards

» Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

 Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

16



Structural Hazards

« Example: a unified instruction and data cache -
stage 4 (MEM) and stage 1 (IF) can never coincide

 The later instruction and all its successors are delayed
until a cycle is found when the resource is free - these
are pipeline bubbles

« Structural hazards are easy to eliminate — increase the

number of resources (for example, implement a separate
Instruction and data cache)

17



Data Hazards

Time (in clock cycles) -
Value of CccC1 CccC?2 CC 3 CC 4 CCh cCcs cc7 ccs cco
register $2- 10 10 10 10 10/-20 -20 =20 =20 =20
Program
execution
order
(in instructions) = = -
iy 1
. e - 11— |-Re
sub 2, 81,43 |IM LE[ -[DM f g
i § i _
I
[ — 1 ]
5 — e | = &
and $12, ©. 8% IM —E|LF~’_ a_|lp E% QJI
or $13, 36, [N = -Ift‘:&eg_ :> :r' TDM_ —EBQJ:
L ¥ L] L
iy ]
add $14, . -Eheg .-
sw 315, 100
Y

Source: H&P textbook 18



Bypassing

Time (in clock cycles) -
CC 1 cc2 CC3 CC4 CC5 cC6o cCc7 CC8 cCc9o

Value of register $2: 10 10 10 10 10/-20 =20 -20 -20 =20
Value of EX/IMEM: X X X =20 X X X X X
Value of MEM/WB: X X X X -20 X X X X

Program
execution
order
(in instructions)
and $12, 52, $5 Reg g
L— ]
or $13, $6, DM g
1
add $14,57 Reg , DM g
sw $15, 100 [—
¥ eg

« Some data hazard stalls can be eliminated: bypassing 19



Example

add R1,R2, R3 [WHRe_ > o

.
w R4, 8(R1) [ g —D M

i e o
Ueisin >j—-[DM -Rea

20



Example

w R1,8R2) [WMHRd" > M

.
w R4, 8(R1) [l g g —D M

AHH D SHR s

21



Example

w R1,8R2) [WMHRd" > M

.
sw R1, 8(R3) [ g —D M

22



Summary

* For the 5-stage pipeline, bypassing can eliminate delays
between the following example pairs of instructions:
add/sub R1, R2, R3
add/sub/lw/sw R4, R1, R5

w  R1, 8(R2)
sw  R1, 4(R3)

 The following pairs of instructions will have intermediate
stalls:
lw R1, 8(R2)
add/sub/lw  R3,R1,R4 or sw R3, 8(R1)

fmul F1,F2, F3
fadd F5, F1, F4
23



Title

* Bullet

24



