Lecture 3: Pipelining Basics

 Today: chapter 1 wrap-up, basic pipelining implementation
(Sections C.1 - C.4)

* Reminders:
= Sign up for the class mailing list

= First assignment is on-line, due next Tuesday
= TA office hours: Ali Shafiee, Monday 3-4pm

= Class notes



Defining Fault, Error, and Failure

* A fault produces a latent error; it becomes effective when
activated, it leads to failure when the observed actual
behavior deviates from the ideal specified behavior

- Example | : a programming mistake is a fault; the buggy
code is the latent error; when the code runs, it is effective;
If the buggy code influences program output/behavior, a
failure occurs

- Example Il : an alpha particle strikes DRAM (fault); if it
changes the memory bit, it produces a latent error; when
the value is read, the error becomes effective; if program

output deviates, failure occurs :



Defining Reliability and Availability

* A system toggles between
» Service accomplishment: service matches specifications
» Service interruption: services deviates from specs

* The toggle is caused by failures and restorations

* Reliability measures continuous service accomplishment
and is usually expressed as mean time to failure (MTTF)

* Availability measures fraction of time that service matches
specifications, expressed as MTTF/ (MTTF + MTTR)



Amdahl’'s Law

* Architecture design is very bottleneck-driven — make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

 Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

« Example: a web server spends 40% of time in the CPU
and 60% of time doing 1/O — a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) — Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66) \



Principle of Locality

» Most programs are predictable in terms of instructions
executed and data accessed

* The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

« Temporal locality: a program will shortly re-visit X

- Spatial locality: a program will shortly visit X+1



Exploit Parallelism

* Most operations do not depend on each other — hence,
execute them in parallel

* At the circuit level, simultaneously access multiple ways
of a set-associative cache

* At the organization level, execute multiple instructions at
the same time

* At the system level, execute a different program while one
IS waiting on I/O



The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined



Quantitative Effects

* As a result of pipelining:

» Time In ns per instruction goes up

» Number of cycles per instruction goes up (note the
Increase in clock speed)

» Total execution time goes down, resulting in lower
time per instruction

» Average cycles per instruction increases slightly

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed



A 5-Stage Pipeline
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A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

Time (in clock cycles)
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A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

Time (in clock cycles)

CC 1 CcC3 CcC 4 CC>5 CC 6

M H '_t”é; | ‘g H DM ) [ g 4
U —y (= ‘_ =
— 1 g | .

J;_r

N
L

|
-
7 |
o
=

" = EF
| —y 129
- mx— "
| —l




A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Time (in clock cyclesy
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A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Time (in clock cyclesy
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A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cycles)
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Conflicts/Problems

* |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

* Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2
(else, use bypassing)

* Branch target changes only at the end of the second stage
-- what do you do in the meantime?

- Data between stages get latched into registers (overhead
that increases latency per instruction)
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Hazards

» Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

 Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways
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Structural Hazards

« Example: a unified instruction and data cache -
stage 4 (MEM) and stage 1 (IF) can never coincide

 The later instruction and all its successors are delayed
until a cycle is found when the resource is free - these
are pipeline bubbles

« Structural hazards are easy to eliminate — increase the

number of resources (for example, implement a separate
Instruction and data cache)

17



Data Hazards
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Bypassing

Time (in clock cycles) -
CC 1 cc2 CC3 CC4 CC5 cC6o cCc7 CC8 cCc9o

Value of register $2: 10 10 10 10 10/-20 =20 -20 -20 =20
Value of EX/IMEM: X X X =20 X X X X X
Value of MEM/WB: X X X X -20 X X X X
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Example

add R1,R2, R3 [WHRe_ > o

.
w R4, 8(R1) [ g —D M
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Example

w R1,8R2) [WMHRd" > M

.
w R4, 8(R1) [l g g —D M
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Example

w R1,8R2) [WMHRd" > M

.
sw R1, 8(R3) [ g —D M
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Summary

* For the 5-stage pipeline, bypassing can eliminate delays
between the following example pairs of instructions:
add/sub R1, R2, R3
add/sub/lw/sw R4, R1, R5

w  R1, 8(R2)
sw  R1, 4(R3)

 The following pairs of instructions will have intermediate
stalls:
lw R1, 8(R2)
add/sub/lw  R3,R1,R4 or sw R3, 8(R1)

fmul F1,F2, F3
fadd F5, F1, F4
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Title

* Bullet
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