
1

Lecture 3: Pipelining Basics

• Today: chapter 1 wrap-up, basic pipelining implementation

 (Sections C.1 - C.4)

• Reminders:

 Sign up for the class mailing list

 First assignment is on-line, due next Tuesday

 TA office hours: Ali Shafiee, Monday 3-4pm

 Class notes

2

Defining Fault, Error, and Failure

• A fault produces a latent error; it becomes effective when

 activated; it leads to failure when the observed actual

 behavior deviates from the ideal specified behavior

• Example I : a programming mistake is a fault; the buggy

 code is the latent error; when the code runs, it is effective;

 if the buggy code influences program output/behavior, a

 failure occurs

• Example II : an alpha particle strikes DRAM (fault); if it

 changes the memory bit, it produces a latent error; when

 the value is read, the error becomes effective; if program

 output deviates, failure occurs

3

Defining Reliability and Availability

• A system toggles between

 Service accomplishment: service matches specifications

 Service interruption: services deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment

 and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches

 specifications, expressed as MTTF / (MTTF + MTTR)

4

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the

 common case fast, do not waste resources on a component

 that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an

 enhancement is limited by the fraction of time the

 enhancement comes into play

• Example: a web server spends 40% of time in the CPU

 and 60% of time doing I/O – a new processor that is ten

 times faster results in a 36% reduction in execution time

 (speedup of 1.56) – Amdahl’s Law states that maximum

 execution time reduction is 40% (max speedup of 1.66)

5

Principle of Locality

• Most programs are predictable in terms of instructions

 executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution

 time in only 10% of the code

• Temporal locality: a program will shortly re-visit X

• Spatial locality: a program will shortly visit X+1

6

Exploit Parallelism

• Most operations do not depend on each other – hence,

 execute them in parallel

• At the circuit level, simultaneously access multiple ways

 of a set-associative cache

• At the organization level, execute multiple instructions at

 the same time

• At the system level, execute a different program while one

 is waiting on I/O

7

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages

B C

A B C

A B C

A B C

Unpipelined

Pipelined

8

Quantitative Effects

• As a result of pipelining:

 Time in ns per instruction goes up

 Number of cycles per instruction goes up (note the

 increase in clock speed)

 Total execution time goes down, resulting in lower

 time per instruction

 Average cycles per instruction increases slightly

 Under ideal conditions, speedup

 = ratio of elapsed times between successive instruction

 completions

 = number of pipeline stages = increase in clock speed

9

A 5-Stage Pipeline

Source: H&P textbook

10

A 5-Stage Pipeline

 Use the PC to access the I-cache and increment PC by 4

11

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume

branches take 2 cyc (there is enough work that branches can easily take more)

12

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

13

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

14

A 5-Stage Pipeline

Write result of ALU computation or load into register file

15

Conflicts/Problems

• I-cache and D-cache are accessed in the same cycle – it

 helps to implement them separately

• Registers are read and written in the same cycle – easy to

 deal with if register read/write time equals cycle time/2

 (else, use bypassing)

• Branch target changes only at the end of the second stage

 -- what do you do in the meantime?

• Data between stages get latched into registers (overhead

 that increases latency per instruction)

16

Hazards

• Structural hazards: different instructions in different stages

 (or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it

 needs a value that has not yet been generated by an

 earlier instruction

• Control hazard: fetch cannot continue because it does

 not know the outcome of an earlier branch – special case

 of a data hazard – separate category because they are

 treated in different ways

17

Structural Hazards

• Example: a unified instruction and data cache 

 stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed

 until a cycle is found when the resource is free  these

 are pipeline bubbles

• Structural hazards are easy to eliminate – increase the

 number of resources (for example, implement a separate

 instruction and data cache)

18

Data Hazards

Source: H&P textbook

19

Bypassing

• Some data hazard stalls can be eliminated: bypassing

20

Example

add R1, R2, R3

lw R4, 8(R1)

21

Example

 lw R1, 8(R2)

 lw R4, 8(R1)

22

Example

 lw R1, 8(R2)

 sw R1, 8(R3)

23

Summary

• For the 5-stage pipeline, bypassing can eliminate delays

 between the following example pairs of instructions:

 add/sub R1, R2, R3

 add/sub/lw/sw R4, R1, R5

 lw R1, 8(R2)

 sw R1, 4(R3)

• The following pairs of instructions will have intermediate

 stalls:

 lw R1, 8(R2)

 add/sub/lw R3, R1, R4 or sw R3, 8(R1)

 fmul F1, F2, F3

 fadd F5, F1, F4

24

Title

• Bullet

