Lecture 2: System Metrics and Pipelining

 Today’s topics: (Sections 1.5 - 1.10)
» Power/Energy examples
» Performance summaries
» Measuring cost and dependability
* Class mailing list sign up

* Class notes

« Assignment 1 will be posted over weekend; due in 12 days

Reducing Power and Energy

- Can gate off transistors that are inactive (reduces leakage)

* Design for typical case and throttle down when activity
exceeds a threshold

* DFS: Dynamic frequency scaling -- only reduces frequency
and dynamic power, but hurts energy

* DVFS: Dynamic voltage and frequency scaling — can reduce
voltage and frequency by (say) 10%; can slow a program
by (say) 8%, but reduce dynamic power by 27%, reduce
total power by (say) 23%, reduce total energy by 17%

(Note: voltage drop - slow transistor - freq drop)

DVFS Example

Other Technology Trends

« DRAM density increases by 40-60% per year, latency has
reduced by 33% in 10 years (the memory wall!), bandwidth
Improves twice as fast as latency decreases

 Disk density improves by 100% every year, latency
Improvement similar to DRAM

« Emergence of NVRAM technologies that can provide a
bridge between DRAM and hard disk drives

Measuring Performance

» Two primary metrics: wall clock time (response time for a
program) and throughput (jobs performed in unit time)

* To optimize throughput, must ensure that there is minimal
waste of resources

* Performance is measured with benchmark suites: a
collection of programs that are likely relevant to the user
= SPEC CPU 2006: cpu-oriented programs (for desktops)
= SPECweb, TPC: throughput-oriented (for servers)
= EEMBC: for embedded processors/workloads

Summarizing Performance

» Consider 25 programs from a benchmark set — how do
we capture the behavior of all 25 programs with a
single number?

PL P2 P3
Sys-A 10 8 25
Sys-B 12 9 20
Sys-C 8 8 30

» Total (average) execution time
» Total (average) weighted execution time
or Average of normalized execution times
» Geometric mean of normalized execution times

AM Example

AM Example

* We fixed a reference machine X and ran 4 programs
A, B, C, D on it such that each program ran for 1 second

* The exact same workload (the four programs execute
the same number of instructions that they did on
machine X) is run on a new machine Y and the
execution times for each program are 0.8, 1.1, 0.5, 2

* With AM of normalized execution times, we can conclude
that Y is 1.1 times slower than X — perhaps, not for all
workloads, but definitely for one specific workload (where
all programs run on the ref-machine for an equal #cycles)

« With GM, you may find inconsistencies 8

GM Example

Computer-A Computer-B. Computer-C
Pl 1 sec 10 secs 20 secs
P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B
(i) C is ~1.6 times faster

* For (i) to be true, P1 must occur 100 times for every
occurrence of P2

 With the above assumption, (ii) is no longer true

Hence, GM can lead to inconsistencies

Summarizing Performance

* GM: does not require a reference machine, but does
not predict performance very well
» So we multiplied execution times and determined
that sys-Ais 1.2x faster...but on what workload?

* AM: does predict performance for a specific workload,
but that workload was determined by executing
programs on a reference machine

» Every year or so, the reference machine will have
to be updated

10

Normalized Execution Times

» Advantage of GM: no reference machine required

* Disadvantage of GM: does not represent any “real entity”
and may not accurately predict performance

» Disadvantage of AM of normalized: need weights (which
may change over time)

« Advantage: can represent a real workload

11

CPU Performance Equation

* Clock cycle time = 1/ clock speed

« CPU time = clock cycle time x cycles per instruction x
number of instructions

* Influencing factors for each:
» clock cycle time: technology and pipeline
» CPI: architecture and instruction set design
» Instruction count: instruction set design and compiler

* CPI (cycles per instruction) or IPC (instructions per cycle)
can not be accurately estimated analytically

12

Measuring System CPI

« Assume that an architectural innovation only affects CPI

 For 3 programs, base CPIs: 1.2, 1.8, 2.5
CPIs for proposed model: 1.4, 1.9, 2.3

* What is the best way to summarize performance with a
single number? AM, HM, or GM of CPIs?

13

Example

* AM of CPI for base case = 1.2 cyc + 1.8 cyc + 2.5 cyc /3
INnstr INstr INnstr
5.5 cycles is execution time if each program ran for
one instruction — therefore, AM of CPI defines a
workload where every program runs for an equal #instrs

« HM of CPlI =1/AM of IPC ; defines a workload where
every program runs for an equal number of cycles

* GM of CPI: warm fuzzy number, not necessarily
representing any workload

14

Speedup Vs. Percentage

« “Speedup’ is a ratio
* “Improvement”, “Increase”, “Decrease” usually refer to
percentage relative to the baseline

« A program ran in 100 seconds on my old laptop and in 70
seconds on my new laptop
= What is the speedup?
= What is the percentage increase in performance?
= What is the reduction in execution time?

15

Wafers and Dies

An entire wafer is produced and chopped into dies that undergo
testing and packaging

© 2003 Eleavier Schanoa (USA). Al righis resarved.

16

Integrated Circuit Cost

 Cost of an integrated circuit =
(cost of die + cost of packaging and testing) / final test yield

» Cost of die = cost of wafer / (dies per wafer x die yield)
 Dies/wafer = wafer area / die area - m wafer diam / die diag
* Die yield = wafer yield x (1 + (defect rate x die area) / o)

* Thus, die yield depends on die area and complexity
arising from multiple manufacturing steps (a ~ 4.0)

17

Integrated Circuit Cost Examples

* Bottomline: cost decreases dramatically if the chip area
Is smaller, if the chip has fewer manufacturing steps (less
complex), if the chip is produced in high volume (10%
lower cost if volume doubles)

* A 30 cm diameter wafer cost $5-6K in 2001

« Such a wafer yields about 366 good 1 cm? dies and 1014
good 0.49 cm? dies (note the effect of area and yield)

* Die sizes: Alpha 21264 1.15 cm?, Itanium 3.0 cm?,
embedded processors are between 0.1 — 0.25 cm?

18

Contribution of IC Costs to Total System Cost

Subsystem Fraction of total cost
Cabinet: sheet metal, plastic, power supply, fans, 6%
cables, nuts, bolts, manuals, shipping box

Processor 22%
DRAM (128 MB) 5%
Video card 5%
Motherboard 5%
Processor board subtotal 37%
Keyboard and mouse 3%
Monitor 19%
Hard disk (20 GB) 9%
DVD drive 6%
I/O devices subtotal 37%

Software (OS + Office) 20% 9

Defining Fault, Error, and Failure

* A fault produces a latent error; it becomes effective when
activated, it leads to failure when the observed actual
behavior deviates from the ideal specified behavior

- Example | : a programming mistake is a fault; the buggy
code is the latent error; when the code runs, it is effective;
If the buggy code influences program output/behavior, a
failure occurs

- Example Il : an alpha particle strikes DRAM (fault); if it
changes the memory bit, it produces a latent error; when
the value is read, the error becomes effective; if program

output deviates, failure occurs o

Defining Reliability and Availability

* A system toggles between
» Service accomplishment: service matches specifications
» Service interruption: services deviates from specs

* The toggle is caused by failures and restorations

* Reliability measures continuous service accomplishment
and is usually expressed as mean time to failure (MTTF)

* Availability measures fraction of time that service matches
specifications, expressed as MTTF/ (MTTF + MTTR)

21

Title

* Bullet

22

