
1

Lecture 2: System Metrics and Pipelining

• Today’s topics: (Sections 1.5 – 1.10)

 Power/Energy examples

 Performance summaries

 Measuring cost and dependability

• Class mailing list sign up

• Class notes

• Assignment 1 will be posted over weekend; due in 12 days

2

Reducing Power and Energy

• Can gate off transistors that are inactive (reduces leakage)

• Design for typical case and throttle down when activity

 exceeds a threshold

• DFS: Dynamic frequency scaling -- only reduces frequency

 and dynamic power, but hurts energy

• DVFS: Dynamic voltage and frequency scaling – can reduce

 voltage and frequency by (say) 10%; can slow a program

 by (say) 8%, but reduce dynamic power by 27%, reduce

 total power by (say) 23%, reduce total energy by 17%

 (Note: voltage drop slow transistor freq drop)

3

DVFS Example

4

Other Technology Trends

• DRAM density increases by 40-60% per year, latency has

 reduced by 33% in 10 years (the memory wall!), bandwidth

 improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency

 improvement similar to DRAM

• Emergence of NVRAM technologies that can provide a

 bridge between DRAM and hard disk drives

5

Measuring Performance

• Two primary metrics: wall clock time (response time for a

 program) and throughput (jobs performed in unit time)

• To optimize throughput, must ensure that there is minimal

 waste of resources

• Performance is measured with benchmark suites: a

 collection of programs that are likely relevant to the user

 SPEC CPU 2006: cpu-oriented programs (for desktops)

 SPECweb, TPC: throughput-oriented (for servers)

 EEMBC: for embedded processors/workloads

6

Summarizing Performance

• Consider 25 programs from a benchmark set – how do

 we capture the behavior of all 25 programs with a

 single number?

 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

 Total (average) execution time

 Total (average) weighted execution time

 or Average of normalized execution times

 Geometric mean of normalized execution times

7

AM Example

8

AM Example

• We fixed a reference machine X and ran 4 programs

 A, B, C, D on it such that each program ran for 1 second

• The exact same workload (the four programs execute

 the same number of instructions that they did on

 machine X) is run on a new machine Y and the

 execution times for each program are 0.8, 1.1, 0.5, 2

• With AM of normalized execution times, we can conclude

 that Y is 1.1 times slower than X – perhaps, not for all

 workloads, but definitely for one specific workload (where

 all programs run on the ref-machine for an equal #cycles)

• With GM, you may find inconsistencies

9

GM Example

 Computer-A Computer-B Computer-C

P1 1 sec 10 secs 20 secs

P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B

 (ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every

 occurrence of P2

• With the above assumption, (ii) is no longer true

 Hence, GM can lead to inconsistencies

10

Summarizing Performance

• GM: does not require a reference machine, but does

 not predict performance very well

 So we multiplied execution times and determined

 that sys-A is 1.2x faster…but on what workload?

• AM: does predict performance for a specific workload,

 but that workload was determined by executing

 programs on a reference machine

 Every year or so, the reference machine will have

 to be updated

11

Normalized Execution Times

• Advantage of GM: no reference machine required

• Disadvantage of GM: does not represent any “real entity”

 and may not accurately predict performance

• Disadvantage of AM of normalized: need weights (which

 may change over time)

• Advantage: can represent a real workload

12

CPU Performance Equation

• Clock cycle time = 1 / clock speed

• CPU time = clock cycle time x cycles per instruction x

 number of instructions

• Influencing factors for each:

 clock cycle time: technology and pipeline

 CPI: architecture and instruction set design

 instruction count: instruction set design and compiler

• CPI (cycles per instruction) or IPC (instructions per cycle)

 can not be accurately estimated analytically

13

Measuring System CPI

• Assume that an architectural innovation only affects CPI

• For 3 programs, base CPIs: 1.2, 1.8, 2.5

 CPIs for proposed model: 1.4, 1.9, 2.3

• What is the best way to summarize performance with a

 single number? AM, HM, or GM of CPIs?

14

Example

• AM of CPI for base case = 1.2 cyc + 1.8 cyc + 2.5 cyc /3

 instr instr instr

 5.5 cycles is execution time if each program ran for

 one instruction – therefore, AM of CPI defines a

 workload where every program runs for an equal #instrs

• HM of CPI = 1 / AM of IPC ; defines a workload where

 every program runs for an equal number of cycles

• GM of CPI: warm fuzzy number, not necessarily

 representing any workload

15

Speedup Vs. Percentage

• “Speedup” is a ratio

• “Improvement”, “Increase”, “Decrease” usually refer to

 percentage relative to the baseline

• A program ran in 100 seconds on my old laptop and in 70

 seconds on my new laptop

 What is the speedup?

 What is the percentage increase in performance?

 What is the reduction in execution time?

16

Wafers and Dies

 An entire wafer is produced and chopped into dies that undergo

testing and packaging

17

Integrated Circuit Cost

• Cost of an integrated circuit =

 (cost of die + cost of packaging and testing) / final test yield

• Cost of die = cost of wafer / (dies per wafer x die yield)

• Dies/wafer = wafer area / die area - p wafer diam / die diag

• Die yield = wafer yield x (1 + (defect rate x die area) / a) -a

• Thus, die yield depends on die area and complexity

 arising from multiple manufacturing steps (a ~ 4.0)

18

Integrated Circuit Cost Examples

• Bottomline: cost decreases dramatically if the chip area

 is smaller, if the chip has fewer manufacturing steps (less

 complex), if the chip is produced in high volume (10%

 lower cost if volume doubles)

• A 30 cm diameter wafer cost $5-6K in 2001

• Such a wafer yields about 366 good 1 cm2 dies and 1014

 good 0.49 cm2 dies (note the effect of area and yield)

• Die sizes: Alpha 21264 1.15 cm2 , Itanium 3.0 cm2 ,

 embedded processors are between 0.1 – 0.25 cm2

19

Contribution of IC Costs to Total System Cost

Subsystem Fraction of total cost

Cabinet: sheet metal, plastic, power supply, fans,

cables, nuts, bolts, manuals, shipping box

6%

Processor 22%

DRAM (128 MB) 5%

Video card 5%

Motherboard 5%

Processor board subtotal 37%

Keyboard and mouse 3%

Monitor 19%

Hard disk (20 GB) 9%

DVD drive 6%

I/O devices subtotal 37%

Software (OS + Office) 20%

20

Defining Fault, Error, and Failure

• A fault produces a latent error; it becomes effective when

 activated; it leads to failure when the observed actual

 behavior deviates from the ideal specified behavior

• Example I : a programming mistake is a fault; the buggy

 code is the latent error; when the code runs, it is effective;

 if the buggy code influences program output/behavior, a

 failure occurs

• Example II : an alpha particle strikes DRAM (fault); if it

 changes the memory bit, it produces a latent error; when

 the value is read, the error becomes effective; if program

 output deviates, failure occurs

21

Defining Reliability and Availability

• A system toggles between

 Service accomplishment: service matches specifications

 Service interruption: services deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment

 and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches

 specifications, expressed as MTTF / (MTTF + MTTR)

22

Title

• Bullet

