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Lecture 2: System Metrics and Pipelining 

• Today’s topics: (Sections 1.5 – 1.10) 

 

 Power/Energy examples  

 Performance summaries 

 Measuring cost and dependability 

 

• Class mailing list sign up 

 

• Class notes 

 

• Assignment 1 will be posted over weekend; due in 12 days 
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Reducing Power and Energy 

• Can gate off transistors that are inactive (reduces leakage) 

 

• Design for typical case and throttle down when activity  

   exceeds a threshold 

 

• DFS: Dynamic frequency scaling  -- only reduces frequency 

   and dynamic power, but hurts energy  

 

• DVFS: Dynamic voltage and frequency scaling – can reduce 

  voltage and frequency by (say) 10%;  can slow a program 

  by (say) 8%, but reduce dynamic power by 27%, reduce 

  total power by (say) 23%, reduce total energy by 17% 

  (Note: voltage drop  slow transistor  freq drop) 
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DVFS Example 
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Other Technology Trends 

•  DRAM density increases by 40-60% per year, latency has 

   reduced by 33% in 10 years (the memory wall!), bandwidth 

   improves twice as fast as latency decreases 

 

•  Disk density improves by 100% every year, latency 

   improvement similar to DRAM 

 

• Emergence of NVRAM technologies that can provide a 

    bridge between DRAM and hard disk drives 
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Measuring Performance 

• Two primary metrics: wall clock time (response time for a 

   program) and throughput (jobs performed in unit time) 

 

• To optimize throughput, must ensure that there is minimal 

   waste of resources 

 

• Performance is measured with benchmark suites: a 

  collection of programs that are likely relevant to the user 

 SPEC CPU 2006: cpu-oriented programs (for desktops) 

 SPECweb, TPC: throughput-oriented (for servers) 

 EEMBC: for embedded processors/workloads 
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Summarizing Performance 

• Consider 25 programs from a benchmark set – how do 

   we capture the behavior of all 25 programs with a 

   single number? 

                             P1        P2           P3 

            Sys-A       10          8            25 

            Sys-B       12          9            20 

            Sys-C        8           8            30 

 

 Total (average) execution time 

 Total (average) weighted execution time 

     or Average of normalized execution times 

 Geometric mean of normalized execution times 
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AM Example 
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AM Example 

• We fixed a reference machine X and ran 4 programs 

  A, B, C, D on it such that each program ran for 1 second 

 

• The exact same workload (the four programs execute 

   the same number of instructions that they did on  

   machine X) is run on a new machine Y and the 

   execution times for each program are 0.8, 1.1, 0.5, 2 

 

• With AM of normalized execution times, we can conclude 

   that Y is 1.1 times slower than X – perhaps, not for all 

   workloads, but definitely for one specific workload (where 

   all programs run on the ref-machine for an equal #cycles) 

 

• With GM, you may find inconsistencies 
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GM Example 

  Computer-A    Computer-B     Computer-C 

P1                       1 sec               10 secs             20 secs 

P2                     1000 secs         100 secs           20 secs 

 

Conclusion with GMs: (i) A=B  

                                    (ii) C is ~1.6 times faster 

 

• For (i) to be true, P1 must occur 100 times for every 

  occurrence of P2 

 

• With the above assumption, (ii) is no longer true 

 

             Hence, GM can lead to inconsistencies 
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Summarizing Performance 

 

• GM: does not require a reference machine, but does 

  not predict performance very well 

 So we multiplied execution times and determined 

    that sys-A is 1.2x faster…but on what workload? 

 

• AM: does predict performance for a specific workload, 

  but that workload was determined by executing 

  programs on a reference machine 

 Every year or so, the reference machine will have 

    to be updated 
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Normalized Execution Times 

• Advantage of GM: no reference machine required 

 

• Disadvantage of GM: does not represent any “real entity” 

   and may not accurately predict performance 

 

• Disadvantage of AM of normalized: need weights (which 

   may change over time)  

 

• Advantage: can represent a real workload  
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CPU Performance Equation 

• Clock cycle time = 1 / clock speed 

 

• CPU time = clock cycle time x cycles per instruction x 

                      number of instructions 

 

• Influencing factors for each: 

 clock cycle time: technology and pipeline 

 CPI: architecture and instruction set design 

 instruction count: instruction set design and compiler 

 

• CPI (cycles per instruction) or IPC (instructions per cycle) 

  can not be accurately estimated analytically 
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Measuring System CPI 

• Assume that an architectural innovation only affects CPI 

 

• For 3 programs, base CPIs: 1.2, 1.8, 2.5 

  CPIs for proposed model: 1.4, 1.9, 2.3 

 

• What is the best way to summarize performance with a 

  single number? AM, HM, or GM of CPIs? 
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Example 

• AM of CPI for base case = 1.2 cyc + 1.8 cyc + 2.5 cyc   /3 

                                                instr         instr        instr 

  5.5 cycles is execution time if each program ran for 

  one instruction – therefore, AM of CPI defines a 

  workload where every program runs for an equal #instrs 

 

• HM of CPI = 1 / AM of IPC  ; defines a workload where 

   every program runs for an equal number of cycles 

 

• GM of CPI: warm fuzzy number, not necessarily 

  representing any workload 
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Speedup Vs. Percentage 

• “Speedup” is a ratio 

 

• “Improvement”, “Increase”, “Decrease” usually refer to 

   percentage relative to the baseline 

 

• A program ran in 100 seconds on my old laptop and in 70 

  seconds on my new laptop 

 What is the speedup? 

 What is the percentage increase in performance? 

 What is the reduction in execution time? 



16 

Wafers and Dies 

 An entire wafer is produced and chopped into dies that undergo  

testing and packaging 
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Integrated Circuit Cost 

• Cost of an integrated circuit = 

  (cost of die + cost of packaging and testing) / final test yield 

 

• Cost of die = cost of wafer / (dies per wafer x die yield) 

 

• Dies/wafer = wafer area / die area  - p wafer diam / die diag 

 

• Die yield = wafer yield x (1 + (defect rate x die area) / a) -a 

 

• Thus, die yield depends on die area and complexity 

  arising from multiple manufacturing steps (a ~ 4.0) 
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Integrated Circuit Cost Examples 

• Bottomline: cost decreases dramatically if the chip area 

   is smaller, if the chip has fewer manufacturing steps (less 

   complex), if the chip is produced in high volume (10% 

   lower cost if volume doubles) 

 

• A 30 cm diameter wafer cost $5-6K in 2001 

 

• Such a wafer yields about 366 good 1 cm2 dies and 1014 

  good 0.49 cm2 dies (note the effect of area and yield) 

 

• Die sizes: Alpha 21264 1.15 cm2 , Itanium 3.0 cm2 , 

  embedded processors are between 0.1 – 0.25 cm2  
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Contribution of IC Costs to Total System Cost 

Subsystem Fraction of total cost 

Cabinet: sheet metal, plastic, power supply, fans, 

cables, nuts, bolts, manuals, shipping box 

6% 

Processor 22% 

DRAM (128 MB) 5% 

Video card 5% 

Motherboard 5% 

Processor board subtotal 37% 

Keyboard and mouse 3% 

Monitor 19% 

Hard disk (20 GB) 9% 

DVD drive 6% 

I/O devices subtotal 37% 

Software (OS + Office) 20% 
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Defining Fault, Error, and Failure 

• A fault produces a latent error; it becomes effective when 

  activated; it leads to failure when the observed actual 

  behavior deviates from the ideal specified behavior 

 

• Example I : a programming mistake is a fault; the buggy 

  code is the latent error; when the code runs, it is effective; 

  if the buggy code influences program output/behavior, a 

  failure occurs 

 

• Example II : an alpha particle strikes DRAM (fault); if it 

  changes the memory bit, it produces a latent error; when 

  the value is read, the error becomes effective; if program 

  output deviates, failure occurs 
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Defining Reliability and Availability 

• A system toggles between 

 Service accomplishment: service matches specifications 

 Service interruption: services deviates from specs 

 

• The toggle is caused by failures and restorations  

 

• Reliability measures continuous service accomplishment 

  and is usually expressed as mean time to failure (MTTF) 

 

• Availability measures fraction of time that service matches 

  specifications, expressed as  MTTF / (MTTF + MTTR) 
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Title 

• Bullet 


