
1

Lecture 2: System Metrics and Pipelining

• Today’s topics: (Sections 1.5 – 1.10)

 Power/Energy examples

 Performance summaries

 Measuring cost and dependability

• Class mailing list sign up

• Class notes

• Assignment 1 will be posted over weekend; due in 12 days

2

Reducing Power and Energy

• Can gate off transistors that are inactive (reduces leakage)

• Design for typical case and throttle down when activity

 exceeds a threshold

• DFS: Dynamic frequency scaling -- only reduces frequency

 and dynamic power, but hurts energy

• DVFS: Dynamic voltage and frequency scaling – can reduce

 voltage and frequency by (say) 10%; can slow a program

 by (say) 8%, but reduce dynamic power by 27%, reduce

 total power by (say) 23%, reduce total energy by 17%

 (Note: voltage drop  slow transistor  freq drop)

3

DVFS Example

4

Other Technology Trends

• DRAM density increases by 40-60% per year, latency has

 reduced by 33% in 10 years (the memory wall!), bandwidth

 improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency

 improvement similar to DRAM

• Emergence of NVRAM technologies that can provide a

 bridge between DRAM and hard disk drives

5

Measuring Performance

• Two primary metrics: wall clock time (response time for a

 program) and throughput (jobs performed in unit time)

• To optimize throughput, must ensure that there is minimal

 waste of resources

• Performance is measured with benchmark suites: a

 collection of programs that are likely relevant to the user

 SPEC CPU 2006: cpu-oriented programs (for desktops)

 SPECweb, TPC: throughput-oriented (for servers)

 EEMBC: for embedded processors/workloads

6

Summarizing Performance

• Consider 25 programs from a benchmark set – how do

 we capture the behavior of all 25 programs with a

 single number?

 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

 Total (average) execution time

 Total (average) weighted execution time

 or Average of normalized execution times

 Geometric mean of normalized execution times

7

AM Example

8

AM Example

• We fixed a reference machine X and ran 4 programs

 A, B, C, D on it such that each program ran for 1 second

• The exact same workload (the four programs execute

 the same number of instructions that they did on

 machine X) is run on a new machine Y and the

 execution times for each program are 0.8, 1.1, 0.5, 2

• With AM of normalized execution times, we can conclude

 that Y is 1.1 times slower than X – perhaps, not for all

 workloads, but definitely for one specific workload (where

 all programs run on the ref-machine for an equal #cycles)

• With GM, you may find inconsistencies

9

GM Example

 Computer-A Computer-B Computer-C

P1 1 sec 10 secs 20 secs

P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B

 (ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every

 occurrence of P2

• With the above assumption, (ii) is no longer true

 Hence, GM can lead to inconsistencies

10

Summarizing Performance

• GM: does not require a reference machine, but does

 not predict performance very well

 So we multiplied execution times and determined

 that sys-A is 1.2x faster…but on what workload?

• AM: does predict performance for a specific workload,

 but that workload was determined by executing

 programs on a reference machine

 Every year or so, the reference machine will have

 to be updated

11

Normalized Execution Times

• Advantage of GM: no reference machine required

• Disadvantage of GM: does not represent any “real entity”

 and may not accurately predict performance

• Disadvantage of AM of normalized: need weights (which

 may change over time)

• Advantage: can represent a real workload

12

CPU Performance Equation

• Clock cycle time = 1 / clock speed

• CPU time = clock cycle time x cycles per instruction x

 number of instructions

• Influencing factors for each:

 clock cycle time: technology and pipeline

 CPI: architecture and instruction set design

 instruction count: instruction set design and compiler

• CPI (cycles per instruction) or IPC (instructions per cycle)

 can not be accurately estimated analytically

13

Measuring System CPI

• Assume that an architectural innovation only affects CPI

• For 3 programs, base CPIs: 1.2, 1.8, 2.5

 CPIs for proposed model: 1.4, 1.9, 2.3

• What is the best way to summarize performance with a

 single number? AM, HM, or GM of CPIs?

14

Example

• AM of CPI for base case = 1.2 cyc + 1.8 cyc + 2.5 cyc /3

 instr instr instr

 5.5 cycles is execution time if each program ran for

 one instruction – therefore, AM of CPI defines a

 workload where every program runs for an equal #instrs

• HM of CPI = 1 / AM of IPC ; defines a workload where

 every program runs for an equal number of cycles

• GM of CPI: warm fuzzy number, not necessarily

 representing any workload

15

Speedup Vs. Percentage

• “Speedup” is a ratio

• “Improvement”, “Increase”, “Decrease” usually refer to

 percentage relative to the baseline

• A program ran in 100 seconds on my old laptop and in 70

 seconds on my new laptop

 What is the speedup?

 What is the percentage increase in performance?

 What is the reduction in execution time?

16

Wafers and Dies

 An entire wafer is produced and chopped into dies that undergo

testing and packaging

17

Integrated Circuit Cost

• Cost of an integrated circuit =

 (cost of die + cost of packaging and testing) / final test yield

• Cost of die = cost of wafer / (dies per wafer x die yield)

• Dies/wafer = wafer area / die area - p wafer diam / die diag

• Die yield = wafer yield x (1 + (defect rate x die area) / a) -a

• Thus, die yield depends on die area and complexity

 arising from multiple manufacturing steps (a ~ 4.0)

18

Integrated Circuit Cost Examples

• Bottomline: cost decreases dramatically if the chip area

 is smaller, if the chip has fewer manufacturing steps (less

 complex), if the chip is produced in high volume (10%

 lower cost if volume doubles)

• A 30 cm diameter wafer cost $5-6K in 2001

• Such a wafer yields about 366 good 1 cm2 dies and 1014

 good 0.49 cm2 dies (note the effect of area and yield)

• Die sizes: Alpha 21264 1.15 cm2 , Itanium 3.0 cm2 ,

 embedded processors are between 0.1 – 0.25 cm2

19

Contribution of IC Costs to Total System Cost

Subsystem Fraction of total cost

Cabinet: sheet metal, plastic, power supply, fans,

cables, nuts, bolts, manuals, shipping box

6%

Processor 22%

DRAM (128 MB) 5%

Video card 5%

Motherboard 5%

Processor board subtotal 37%

Keyboard and mouse 3%

Monitor 19%

Hard disk (20 GB) 9%

DVD drive 6%

I/O devices subtotal 37%

Software (OS + Office) 20%

20

Defining Fault, Error, and Failure

• A fault produces a latent error; it becomes effective when

 activated; it leads to failure when the observed actual

 behavior deviates from the ideal specified behavior

• Example I : a programming mistake is a fault; the buggy

 code is the latent error; when the code runs, it is effective;

 if the buggy code influences program output/behavior, a

 failure occurs

• Example II : an alpha particle strikes DRAM (fault); if it

 changes the memory bit, it produces a latent error; when

 the value is read, the error becomes effective; if program

 output deviates, failure occurs

21

Defining Reliability and Availability

• A system toggles between

 Service accomplishment: service matches specifications

 Service interruption: services deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment

 and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches

 specifications, expressed as MTTF / (MTTF + MTTR)

22

Title

• Bullet

