
1 

Lecture 2: System Metrics and Pipelining 

• Today’s topics: (Sections 1.5 – 1.10) 

 

 Power/Energy examples  

 Performance summaries 

 Measuring cost and dependability 

 

• Class mailing list sign up 

 

• Class notes 

 

• Assignment 1 will be posted over weekend; due in 12 days 
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Reducing Power and Energy 

• Can gate off transistors that are inactive (reduces leakage) 

 

• Design for typical case and throttle down when activity  

   exceeds a threshold 

 

• DFS: Dynamic frequency scaling  -- only reduces frequency 

   and dynamic power, but hurts energy  

 

• DVFS: Dynamic voltage and frequency scaling – can reduce 

  voltage and frequency by (say) 10%;  can slow a program 

  by (say) 8%, but reduce dynamic power by 27%, reduce 

  total power by (say) 23%, reduce total energy by 17% 

  (Note: voltage drop  slow transistor  freq drop) 
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DVFS Example 
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Other Technology Trends 

•  DRAM density increases by 40-60% per year, latency has 

   reduced by 33% in 10 years (the memory wall!), bandwidth 

   improves twice as fast as latency decreases 

 

•  Disk density improves by 100% every year, latency 

   improvement similar to DRAM 

 

• Emergence of NVRAM technologies that can provide a 

    bridge between DRAM and hard disk drives 
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Measuring Performance 

• Two primary metrics: wall clock time (response time for a 

   program) and throughput (jobs performed in unit time) 

 

• To optimize throughput, must ensure that there is minimal 

   waste of resources 

 

• Performance is measured with benchmark suites: a 

  collection of programs that are likely relevant to the user 

 SPEC CPU 2006: cpu-oriented programs (for desktops) 

 SPECweb, TPC: throughput-oriented (for servers) 

 EEMBC: for embedded processors/workloads 
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Summarizing Performance 

• Consider 25 programs from a benchmark set – how do 

   we capture the behavior of all 25 programs with a 

   single number? 

                             P1        P2           P3 

            Sys-A       10          8            25 

            Sys-B       12          9            20 

            Sys-C        8           8            30 

 

 Total (average) execution time 

 Total (average) weighted execution time 

     or Average of normalized execution times 

 Geometric mean of normalized execution times 
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AM Example 
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AM Example 

• We fixed a reference machine X and ran 4 programs 

  A, B, C, D on it such that each program ran for 1 second 

 

• The exact same workload (the four programs execute 

   the same number of instructions that they did on  

   machine X) is run on a new machine Y and the 

   execution times for each program are 0.8, 1.1, 0.5, 2 

 

• With AM of normalized execution times, we can conclude 

   that Y is 1.1 times slower than X – perhaps, not for all 

   workloads, but definitely for one specific workload (where 

   all programs run on the ref-machine for an equal #cycles) 

 

• With GM, you may find inconsistencies 
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GM Example 

  Computer-A    Computer-B     Computer-C 

P1                       1 sec               10 secs             20 secs 

P2                     1000 secs         100 secs           20 secs 

 

Conclusion with GMs: (i) A=B  

                                    (ii) C is ~1.6 times faster 

 

• For (i) to be true, P1 must occur 100 times for every 

  occurrence of P2 

 

• With the above assumption, (ii) is no longer true 

 

             Hence, GM can lead to inconsistencies 
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Summarizing Performance 

 

• GM: does not require a reference machine, but does 

  not predict performance very well 

 So we multiplied execution times and determined 

    that sys-A is 1.2x faster…but on what workload? 

 

• AM: does predict performance for a specific workload, 

  but that workload was determined by executing 

  programs on a reference machine 

 Every year or so, the reference machine will have 

    to be updated 
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Normalized Execution Times 

• Advantage of GM: no reference machine required 

 

• Disadvantage of GM: does not represent any “real entity” 

   and may not accurately predict performance 

 

• Disadvantage of AM of normalized: need weights (which 

   may change over time)  

 

• Advantage: can represent a real workload  
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CPU Performance Equation 

• Clock cycle time = 1 / clock speed 

 

• CPU time = clock cycle time x cycles per instruction x 

                      number of instructions 

 

• Influencing factors for each: 

 clock cycle time: technology and pipeline 

 CPI: architecture and instruction set design 

 instruction count: instruction set design and compiler 

 

• CPI (cycles per instruction) or IPC (instructions per cycle) 

  can not be accurately estimated analytically 
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Measuring System CPI 

• Assume that an architectural innovation only affects CPI 

 

• For 3 programs, base CPIs: 1.2, 1.8, 2.5 

  CPIs for proposed model: 1.4, 1.9, 2.3 

 

• What is the best way to summarize performance with a 

  single number? AM, HM, or GM of CPIs? 
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Example 

• AM of CPI for base case = 1.2 cyc + 1.8 cyc + 2.5 cyc   /3 

                                                instr         instr        instr 

  5.5 cycles is execution time if each program ran for 

  one instruction – therefore, AM of CPI defines a 

  workload where every program runs for an equal #instrs 

 

• HM of CPI = 1 / AM of IPC  ; defines a workload where 

   every program runs for an equal number of cycles 

 

• GM of CPI: warm fuzzy number, not necessarily 

  representing any workload 
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Speedup Vs. Percentage 

• “Speedup” is a ratio 

 

• “Improvement”, “Increase”, “Decrease” usually refer to 

   percentage relative to the baseline 

 

• A program ran in 100 seconds on my old laptop and in 70 

  seconds on my new laptop 

 What is the speedup? 

 What is the percentage increase in performance? 

 What is the reduction in execution time? 
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Wafers and Dies 

 An entire wafer is produced and chopped into dies that undergo  

testing and packaging 
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Integrated Circuit Cost 

• Cost of an integrated circuit = 

  (cost of die + cost of packaging and testing) / final test yield 

 

• Cost of die = cost of wafer / (dies per wafer x die yield) 

 

• Dies/wafer = wafer area / die area  - p wafer diam / die diag 

 

• Die yield = wafer yield x (1 + (defect rate x die area) / a) -a 

 

• Thus, die yield depends on die area and complexity 

  arising from multiple manufacturing steps (a ~ 4.0) 
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Integrated Circuit Cost Examples 

• Bottomline: cost decreases dramatically if the chip area 

   is smaller, if the chip has fewer manufacturing steps (less 

   complex), if the chip is produced in high volume (10% 

   lower cost if volume doubles) 

 

• A 30 cm diameter wafer cost $5-6K in 2001 

 

• Such a wafer yields about 366 good 1 cm2 dies and 1014 

  good 0.49 cm2 dies (note the effect of area and yield) 

 

• Die sizes: Alpha 21264 1.15 cm2 , Itanium 3.0 cm2 , 

  embedded processors are between 0.1 – 0.25 cm2  
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Contribution of IC Costs to Total System Cost 

Subsystem Fraction of total cost 

Cabinet: sheet metal, plastic, power supply, fans, 

cables, nuts, bolts, manuals, shipping box 

6% 

Processor 22% 

DRAM (128 MB) 5% 

Video card 5% 

Motherboard 5% 

Processor board subtotal 37% 

Keyboard and mouse 3% 

Monitor 19% 

Hard disk (20 GB) 9% 

DVD drive 6% 

I/O devices subtotal 37% 

Software (OS + Office) 20% 
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Defining Fault, Error, and Failure 

• A fault produces a latent error; it becomes effective when 

  activated; it leads to failure when the observed actual 

  behavior deviates from the ideal specified behavior 

 

• Example I : a programming mistake is a fault; the buggy 

  code is the latent error; when the code runs, it is effective; 

  if the buggy code influences program output/behavior, a 

  failure occurs 

 

• Example II : an alpha particle strikes DRAM (fault); if it 

  changes the memory bit, it produces a latent error; when 

  the value is read, the error becomes effective; if program 

  output deviates, failure occurs 
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Defining Reliability and Availability 

• A system toggles between 

 Service accomplishment: service matches specifications 

 Service interruption: services deviates from specs 

 

• The toggle is caused by failures and restorations  

 

• Reliability measures continuous service accomplishment 

  and is usually expressed as mean time to failure (MTTF) 

 

• Availability measures fraction of time that service matches 

  specifications, expressed as  MTTF / (MTTF + MTTR) 
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Title 

• Bullet 


