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Introduction 

• Background: CS 3810 or equivalent, based on Hennessy 

  and Patterson’s Computer Organization and Design 

 

• Text for CS/EE 6810: Hennessy and Patterson’s 

  Computer Architecture, A Quantitative Approach, 5th Edition 

 

• Topics 

 Measuring performance/cost/power 

 Instruction level parallelism, dynamic and static 

 Memory hierarchy 

 Multiprocessors 

 Storage systems and networks 
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Organizational Issues 

• Office hours, MEB 3414, by appointment 

 

• TA: Ali Shafiei, office hours and contact info: TBA 

 

• Special accommodations, add/drop policies (see class  

  webpage) 

 

• Class web-page, slides, notes, and class mailing list at 

   http://www.eng.utah.edu/~cs6810 

 

• Grades: 

 Two midterms, 25% each 

 Homework assignments, 50%, you may skip one 

 No tolerance for cheating 
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Lecture 1: Computing Trends, Metrics 

• Topics: (Sections 1.1 - 1.5, 1.8 - 1.10) 

 

 Technology trends 

 Performance summaries 

 Performance equations 
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Historical Microprocessor Performance 

Source: H&P textbook 
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Points to Note 

• The 52% growth per year is because of faster clock speeds 

   and architectural innovations  (led to 25x higher speed) 

 

• Clock speed increases have dropped to 1% per year in 

   recent years 

 

• The 22% growth includes the parallelization from multiple 

   cores 

 

• Moore’s Law: transistors on a chip double every 18-24  

  months 
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Clock Speed Increases 

Source: H&P textbook 
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Processor Technology Trends 

• Transistor density increases by 35% per year and die size 

  increases by 10-20% per year… more cores! 

 

• Transistor speed improves linearly with size (complex  

  equation involving voltages, resistances, capacitances)… 

  can lead to clock speed improvements! 

 

• The power wall:  it is not possible to consistently run at 

   higher frequencies without hitting power/thermal limits 

   (Turbo Mode can cause occasional frequency boosts) 

 

• Wire delays do not scale down at the same rate as logic 

  delays 
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Recent Microprocessor Trends 

 2004  2010 

Source: Micron University Symp. 

Transistors: 1.43x / year 

Cores: 1.2 - 1.4x 

Performance: 1.15x 

Frequency: 1.05x 

Power: 1.04x 
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What Helps Performance? 

• Note: no increase in clock speed  

 

• In a clock cycle, can do more work  --  since transistors are 

  faster, transistors are more energy-efficient, and there’s 

  more of them 

 

• Better architectures: finding more parallelism in one thread, 

   better branch prediction, better cache policies, better 

   memory organizations, more thread-level parallelism, etc. 

 

• Core design is undergoing little change, but more cores 

   available per chip;  most future innovations will likely be in 

   multi-threaded prog models and memory hierarchies 
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Where Are We Headed? 

• Modern trends: 

 

 Clock speed improvements are slowing 

 power constraints 

 Difficult to further optimize a single core for performance 

 Multi-cores: each new processor generation will 

    accommodate more cores 

 Need better programming models and efficient 

    execution for multi-threaded applications 

 Need better memory hierarchies 

 Need greater energy efficiency 
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Modern Processor Today 

•  Intel Core i7 

 

 Clock frequency: 3.2 – 3.33 GHz 

 45nm and 32nm products 

 Cores: 4 – 6  

 Power: 95 – 130 W 

 Two threads per core 

 3-level cache, 12 MB L3 cache 

 Price: $300 - $1000  
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Power Consumption Trends 

• Dyn power  a  activity x capacitance x voltage2 x frequency 

 

• Capacitance per transistor and voltage are decreasing, 

  but number of transistors is increasing at a faster rate; 

  hence clock frequency must be kept steady 

 

• Leakage power is also rising; is a function of transistor  

   count, leakage current, and supply voltage 

 

• Power consumption is already between 100-150W in 

  high-performance processors today 

 

• Energy = power x time = (dynpower + lkgpower) x time 
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Power Vs. Energy 

• Energy is the ultimate metric:  it tells us the true “cost” of 

   performing a fixed task 

 

• Power (energy/time) poses constraints; can only work fast 

  enough to max out the power delivery or cooling solution 

 

• If processor A consumes 1.2x the power of processor B,  

  but finishes the task in 30% less time, its relative energy 

  is 1.2 X 0.7 = 0.84;  Proc-A is better, assuming that 1.2x  

  power can be supported by the system 
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Reducing Power and Energy 

• Can gate off transistors that are inactive (reduces leakage) 

 

• Design for typical case and throttle down when activity  

   exceeds a threshold 

 

• DFS: Dynamic frequency scaling  -- only reduces frequency 

   and dynamic power, but hurts energy  

 

• DVFS: Dynamic voltage and frequency scaling – can reduce 

  voltage and frequency by (say) 10%;  can slow a program 

  by (say) 8%, but reduce dynamic power by 27%, reduce 

  total power by (say) 23%, reduce total energy by 17% 

  (Note: voltage drop  slow transistor  freq drop) 
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Other Technology Trends 

•  DRAM density increases by 40-60% per year, latency has 

   reduced by 33% in 10 years (the memory wall!), bandwidth 

   improves twice as fast as latency decreases 

 

•  Disk density improves by 100% every year, latency 

   improvement similar to DRAM 

 

• Emergence of NVRAM technologies that can provide a 

    bridge between DRAM and hard disk drives 
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Measuring Performance 

• Two primary metrics: wall clock time (response time for a 

   program) and throughput (jobs performed in unit time) 

 

• To optimize throughput, must ensure that there is minimal 

   waste of resources 

 

• Performance is measured with benchmark suites: a 

  collection of programs that are likely relevant to the user 

 SPEC CPU 2006: cpu-oriented programs (for desktops) 

 SPECweb, TPC: throughput-oriented (for servers) 

 EEMBC: for embedded processors/workloads 
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Summarizing Performance 

• Consider 25 programs from a benchmark set – how do 

   we capture the behavior of all 25 programs with a 

   single number? 

                             P1        P2           P3 

            Sys-A       10          8            25 

            Sys-B       12          9            20 

            Sys-C        8           8            30 

 

 Total (average) execution time 

 Total (average) weighted execution time 

     or Average of normalized execution times 

 Geometric mean of normalized execution times 
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AM Example 

• We fixed a reference machine X and ran 4 programs 

  A, B, C, D on it such that each program ran for 1 second 

 

• The exact same workload (the four programs execute 

   the same number of instructions that they did on  

   machine X) is run on a new machine Y and the 

   execution times for each program are 0.8, 1.1, 0.5, 2 

 

• With AM of normalized execution times, we can conclude 

   that Y is 1.1 times slower than X – perhaps, not for all 

   workloads, but definitely for one specific workload (where 

   all programs run on the ref-machine for an equal #cycles) 

 

• With GM, you may find inconsistencies 
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GM Example 

  Computer-A    Computer-B     Computer-C 

P1                       1 sec               10 secs             20 secs 

P2                     1000 secs         100 secs           20 secs 

 

Conclusion with GMs: (i) A=B  

                                    (ii) C is ~1.6 times faster 

 

• For (i) to be true, P1 must occur 100 times for every 

  occurrence of P2 

 

• With the above assumption, (ii) is no longer true 

 

             Hence, GM can lead to inconsistencies 
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Summarizing Performance 

 

• GM: does not require a reference machine, but does 

  not predict performance very well 

 So we multiplied execution times and determined 

    that sys-A is 1.2x faster…but on what workload? 

 

• AM: does predict performance for a specific workload, 

  but that workload was determined by executing 

  programs on a reference machine 

 Every year or so, the reference machine will have 

    to be updated 
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Normalized Execution Times 

• Advantage of GM: no reference machine required 

 

• Disadvantage of GM: does not represent any “real entity” 

   and may not accurately predict performance 

 

• Disadvantage of AM of normalized: need weights (which 

   may change over time)  

 

• Advantage: can represent a real workload  
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CPU Performance Equation 

• Clock cycle time = 1 / clock speed 

 

• CPU time = clock cycle time x cycles per instruction x 

                      number of instructions 

 

• Influencing factors for each: 

 clock cycle time: technology and pipeline 

 CPI: architecture and instruction set design 

 instruction count: instruction set design and compiler 

 

• CPI (cycles per instruction) or IPC (instructions per cycle) 

  can not be accurately estimated analytically 
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Title 

• Bullet 


