
1

Introduction

• Background: CS 3810 or equivalent, based on Hennessy

 and Patterson’s Computer Organization and Design

• Text for CS/EE 6810: Hennessy and Patterson’s

 Computer Architecture, A Quantitative Approach, 5th Edition

• Topics

 Measuring performance/cost/power

 Instruction level parallelism, dynamic and static

 Memory hierarchy

 Multiprocessors

 Storage systems and networks

2

Organizational Issues

• Office hours, MEB 3414, by appointment

• TA: Ali Shafiei, office hours and contact info: TBA

• Special accommodations, add/drop policies (see class

 webpage)

• Class web-page, slides, notes, and class mailing list at

 http://www.eng.utah.edu/~cs6810

• Grades:

 Two midterms, 25% each

 Homework assignments, 50%, you may skip one

 No tolerance for cheating

3

Lecture 1: Computing Trends, Metrics

• Topics: (Sections 1.1 - 1.5, 1.8 - 1.10)

 Technology trends

 Performance summaries

 Performance equations

4

Historical Microprocessor Performance

Source: H&P textbook

5

Points to Note

• The 52% growth per year is because of faster clock speeds

 and architectural innovations (led to 25x higher speed)

• Clock speed increases have dropped to 1% per year in

 recent years

• The 22% growth includes the parallelization from multiple

 cores

• Moore’s Law: transistors on a chip double every 18-24

 months

6

Clock Speed Increases

Source: H&P textbook

7

Processor Technology Trends

• Transistor density increases by 35% per year and die size

 increases by 10-20% per year… more cores!

• Transistor speed improves linearly with size (complex

 equation involving voltages, resistances, capacitances)…

 can lead to clock speed improvements!

• The power wall: it is not possible to consistently run at

 higher frequencies without hitting power/thermal limits

 (Turbo Mode can cause occasional frequency boosts)

• Wire delays do not scale down at the same rate as logic

 delays

8

Recent Microprocessor Trends

 2004 2010

Source: Micron University Symp.

Transistors: 1.43x / year

Cores: 1.2 - 1.4x

Performance: 1.15x

Frequency: 1.05x

Power: 1.04x

9

What Helps Performance?

• Note: no increase in clock speed

• In a clock cycle, can do more work -- since transistors are

 faster, transistors are more energy-efficient, and there’s

 more of them

• Better architectures: finding more parallelism in one thread,

 better branch prediction, better cache policies, better

 memory organizations, more thread-level parallelism, etc.

• Core design is undergoing little change, but more cores

 available per chip; most future innovations will likely be in

 multi-threaded prog models and memory hierarchies

10

Where Are We Headed?

• Modern trends:

 Clock speed improvements are slowing

 power constraints

 Difficult to further optimize a single core for performance

 Multi-cores: each new processor generation will

 accommodate more cores

 Need better programming models and efficient

 execution for multi-threaded applications

 Need better memory hierarchies

 Need greater energy efficiency

11

Modern Processor Today

• Intel Core i7

 Clock frequency: 3.2 – 3.33 GHz

 45nm and 32nm products

 Cores: 4 – 6

 Power: 95 – 130 W

 Two threads per core

 3-level cache, 12 MB L3 cache

 Price: $300 - $1000

12

Power Consumption Trends

• Dyn power a activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,

 but number of transistors is increasing at a faster rate;

 hence clock frequency must be kept steady

• Leakage power is also rising; is a function of transistor

 count, leakage current, and supply voltage

• Power consumption is already between 100-150W in

 high-performance processors today

• Energy = power x time = (dynpower + lkgpower) x time

13

Power Vs. Energy

• Energy is the ultimate metric: it tells us the true “cost” of

 performing a fixed task

• Power (energy/time) poses constraints; can only work fast

 enough to max out the power delivery or cooling solution

• If processor A consumes 1.2x the power of processor B,

 but finishes the task in 30% less time, its relative energy

 is 1.2 X 0.7 = 0.84; Proc-A is better, assuming that 1.2x

 power can be supported by the system

14

Reducing Power and Energy

• Can gate off transistors that are inactive (reduces leakage)

• Design for typical case and throttle down when activity

 exceeds a threshold

• DFS: Dynamic frequency scaling -- only reduces frequency

 and dynamic power, but hurts energy

• DVFS: Dynamic voltage and frequency scaling – can reduce

 voltage and frequency by (say) 10%; can slow a program

 by (say) 8%, but reduce dynamic power by 27%, reduce

 total power by (say) 23%, reduce total energy by 17%

 (Note: voltage drop  slow transistor  freq drop)

15

Other Technology Trends

• DRAM density increases by 40-60% per year, latency has

 reduced by 33% in 10 years (the memory wall!), bandwidth

 improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency

 improvement similar to DRAM

• Emergence of NVRAM technologies that can provide a

 bridge between DRAM and hard disk drives

16

Measuring Performance

• Two primary metrics: wall clock time (response time for a

 program) and throughput (jobs performed in unit time)

• To optimize throughput, must ensure that there is minimal

 waste of resources

• Performance is measured with benchmark suites: a

 collection of programs that are likely relevant to the user

 SPEC CPU 2006: cpu-oriented programs (for desktops)

 SPECweb, TPC: throughput-oriented (for servers)

 EEMBC: for embedded processors/workloads

17

Summarizing Performance

• Consider 25 programs from a benchmark set – how do

 we capture the behavior of all 25 programs with a

 single number?

 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

 Total (average) execution time

 Total (average) weighted execution time

 or Average of normalized execution times

 Geometric mean of normalized execution times

18

AM Example

• We fixed a reference machine X and ran 4 programs

 A, B, C, D on it such that each program ran for 1 second

• The exact same workload (the four programs execute

 the same number of instructions that they did on

 machine X) is run on a new machine Y and the

 execution times for each program are 0.8, 1.1, 0.5, 2

• With AM of normalized execution times, we can conclude

 that Y is 1.1 times slower than X – perhaps, not for all

 workloads, but definitely for one specific workload (where

 all programs run on the ref-machine for an equal #cycles)

• With GM, you may find inconsistencies

19

GM Example

 Computer-A Computer-B Computer-C

P1 1 sec 10 secs 20 secs

P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B

 (ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every

 occurrence of P2

• With the above assumption, (ii) is no longer true

 Hence, GM can lead to inconsistencies

20

Summarizing Performance

• GM: does not require a reference machine, but does

 not predict performance very well

 So we multiplied execution times and determined

 that sys-A is 1.2x faster…but on what workload?

• AM: does predict performance for a specific workload,

 but that workload was determined by executing

 programs on a reference machine

 Every year or so, the reference machine will have

 to be updated

21

Normalized Execution Times

• Advantage of GM: no reference machine required

• Disadvantage of GM: does not represent any “real entity”

 and may not accurately predict performance

• Disadvantage of AM of normalized: need weights (which

 may change over time)

• Advantage: can represent a real workload

22

CPU Performance Equation

• Clock cycle time = 1 / clock speed

• CPU time = clock cycle time x cycles per instruction x

 number of instructions

• Influencing factors for each:

 clock cycle time: technology and pipeline

 CPI: architecture and instruction set design

 instruction count: instruction set design and compiler

• CPI (cycles per instruction) or IPC (instructions per cycle)

 can not be accurately estimated analytically

23

Title

• Bullet

