
1

Lecture 25: Interconnection Networks

• Topics: communication latency, centralized and

decentralized switches, routing, deadlocks (Appendix E)

• Review session, Wednesday Dec 1st, 10-12, LCR (MEB 3147)

• Final exam reminders

• Come early, 10:35 – 12:15

• Same rules as first midterm, open books/notes/…,

• Can use calculators and laptops (no search or internet)

• 20% from first midterm material; remaining 80% from

caches, multiprocs, TM

• 20% new problems

• Attempt every question

2

Topologies

• Internet topologies are not very regular – they grew

incrementally

• Supercomputers have regular interconnect topologies

and trade off cost for high bandwidth

• Nodes can be connected with

 centralized switch: all nodes have input and output

wires going to a centralized chip that internally

handles all routing

 decentralized switch: each node is connected to a

switch that routes data to one of a few neighbors

3

Centralized Crossbar Switch

P1

P2

P3

P4

P5

P6

P7

P0

Crossbar

switch

4

Centralized Crossbar Switch

P1

P2

P3

P4

P5

P6

P7

P0

5

Crossbar Properties

• Assuming each node has one input and one output, a

crossbar can provide maximum bandwidth: N messages

can be sent as long as there are N unique sources and

N unique destinations

• Maximum overhead: WN2 internal switches, where W is

data width and N is number of nodes

• To reduce overhead, use smaller switches as building

blocks – trade off overhead for lower effective bandwidth

6

Switch with Omega Network

P1

P2

P3

P4

P5

P6

P7

P0000

001

010

011

100

101

110

111 111

110

101

100

011

010

001

000

7

Omega Network Properties

• The switch complexity is now O(N log N)

• Contention increases: P0 P5 and P1 P7 cannot

happen concurrently (this was possible in a crossbar)

• To deal with contention, can increase the number of

levels (redundant paths) – by mirroring the network, we

can route from P0 to P5 via N intermediate nodes, while

increasing complexity by a factor of 2

8

Tree Network

• Complexity is O(N)

• Can yield low latencies when communicating with neighbors

• Can build a fat tree by having multiple incoming and outgoing links

P0 P3P2P1 P4 P7P6P5

9

Bisection Bandwidth

• Split N nodes into two groups of N/2 nodes such that the

bandwidth between these two groups is minimum: that is

the bisection bandwidth

• Why is it relevant: if traffic is completely random, the

probability of a message going across the two halves is

½ – if all nodes send a message, the bisection

bandwidth will have to be N/2

• The concept of bisection bandwidth confirms that the

tree network is not suited for random traffic patterns, but

for localized traffic patterns

10

Distributed Switches: Ring

• Each node is connected to a 3x3 switch that routes

messages between the node and its two neighbors

• Effectively a repeated bus: multiple messages in transit

• Disadvantage: bisection bandwidth of 2 and N/2 hops on

average

11

Distributed Switch Options

• Performance can be increased by throwing more hardware

at the problem: fully-connected switches: every switch is

connected to every other switch: N2 wiring complexity,

N2 /4 bisection bandwidth

• Most commercial designs adopt a point between the two

extremes (ring and fully-connected):

 Grid: each node connects with its N, E, W, S neighbors

 Torus: connections wrap around

 Hypercube: links between nodes whose binary names

differ in a single bit

12

Topology Examples

Grid

Hypercube

Torus

Criteria Bus Ring 2Dtorus 6-cube Fully

connected

Performance

Bisection

bandwidth

Cost

Ports/switch

Total links

13

Topology Examples

Grid

Hypercube

Torus

Criteria Bus Ring 2Dtorus 6-cube Fully

connected

Performance

Bisection

bandwidth

1 2 16 32 1024

Cost

Ports/switch

Total links 1

3

128

5

192

7

256

64

2080

14

k-ary d-cube

• Consider a k-ary d-cube: a d-dimension array with k

elements in each dimension, there are links between

elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :

Switch degree :

Number of links :

Pins per node :

Avg. routing distance:

Diameter :

Bisection bandwidth :

Switch complexity :

Should we minimize or maximize dimension?

15

k-ary d-Cube

• Consider a k-ary d-cube: a d-dimension array with k

elements in each dimension, there are links between

elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :

Switch degree :

Number of links :

Pins per node :

Avg. routing distance:

Diameter :

Bisection bandwidth :

Switch complexity :

N

2d + 1

Nd

2wd

d(k-1)/2

d(k-1)

2wkd-1

Should we minimize or maximize dimension?

(2d + 1)2

(with no wraparound)

16

Routing

• Deterministic routing: given the source and destination,

there exists a unique route

• Adaptive routing: a switch may alter the route in order to

deal with unexpected events (faults, congestion) – more

complexity in the router vs. potentially better performance

• Example of deterministic routing: dimension order routing:

send packet along first dimension until destination co-ord

(in that dimension) is reached, then next dimension, etc.

17

Deadlock

• Deadlock happens when there is a cycle of resource

dependencies – a process holds on to a resource (A) and

attempts to acquire another resource (B) – A is not

relinquished until B is acquired

18

Deadlock Example

Packets of message 1

Packets of message 2

Packets of message 3

Packets of message 4

4-way switch

Output ports

Each message is attempting to make a left turn – it must acquire an

output port, while still holding on to a series of input and output ports

Input ports

19

Deadlock-Free Proofs

• Number edges and show that all routes will traverse edges in increasing (or

decreasing) order – therefore, it will be impossible to have cyclic dependencies

• Example: k-ary 2-d array with dimension routing: first route along x-dimension,

then along y

1 2 3

2 1 0

1 2 3

2 1 0

1 2 3

2 1 0

1 2 3

2 1 0

17

18

19

18

17

16

20

Breaking Deadlock I

• The earlier proof does not apply to tori because of

wraparound edges

• Partition resources across multiple virtual channels

• If a wraparound edge must be used in a torus, travel on

virtual channel 1, else travel on virtual channel 0

21

Breaking Deadlock II

• Consider the eight possible turns in a 2-d array (note that

turns lead to cycles)

• By preventing just two turns, cycles can be eliminated

• Dimension-order routing disallows four turns

• Helps avoid deadlock even in adaptive routing

West-First North-Last Negative-First Can allow

deadlocks

22

Title

• Bullet

