## Lecture 25: Interconnection Networks

- Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)
- Review session, Wednesday Dec $1^{\text {st }}, 10-12$, LCR (MEB 3147)
- Final exam reminders
- Come early, 10:35-12:15
- Same rules as first midterm, open books/notes/...,
- Can use calculators and laptops (no search or internet)
- 20\% from first midterm material; remaining $80 \%$ from caches, multiprocs, TM
- 20\% new problems
- Attempt every question


## Topologies

- Internet topologies are not very regular - they grew incrementally
- Supercomputers have regular interconnect topologies and trade off cost for high bandwidth
- Nodes can be connected with
$>$ centralized switch: all nodes have input and output wires going to a centralized chip that internally handles all routing
$>$ decentralized switch: each node is connected to a switch that routes data to one of a few neighbors


## Centralized Crossbar Switch



## Centralized Crossbar Switch



## Crossbar Properties

- Assuming each node has one input and one output, a crossbar can provide maximum bandwidth: N messages can be sent as long as there are N unique sources and N unique destinations
- Maximum overhead: WN² internal switches, where W is data width and N is number of nodes
- To reduce overhead, use smaller switches as building blocks - trade off overhead for lower effective bandwidth



## Omega Network Properties

- The switch complexity is now $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Contention increases: P0 $\rightarrow$ P5 and P1 $\rightarrow$ P7 cannot happen concurrently (this was possible in a crossbar)
- To deal with contention, can increase the number of levels (redundant paths) - by mirroring the network, we can route from P0 to P5 via N intermediate nodes, while increasing complexity by a factor of 2


## Tree Network

- Complexity is $\mathrm{O}(\mathrm{N})$
- Can yield low latencies when communicating with neighbors
- Can build a fat tree by having multiple incoming and outgoing links



## Bisection Bandwidth

- Split N nodes into two groups of $\mathrm{N} / 2$ nodes such that the bandwidth between these two groups is minimum: that is the bisection bandwidth
- Why is it relevant: if traffic is completely random, the probability of a message going across the two halves is $1 / 2$ - if all nodes send a message, the bisection bandwidth will have to be N/2
- The concept of bisection bandwidth confirms that the tree network is not suited for random traffic patterns, but for localized traffic patterns


## Distributed Switches: Ring

- Each node is connected to a $3 \times 3$ switch that routes messages between the node and its two neighbors
- Effectively a repeated bus: multiple messages in transit
- Disadvantage: bisection bandwidth of 2 and $\mathrm{N} / 2$ hops on average



## Distributed Switch Options

- Performance can be increased by throwing more hardware at the problem: fully-connected switches: every switch is connected to every other switch: $\mathrm{N}^{2}$ wiring complexity, $\mathrm{N}^{2} / 4$ bisection bandwidth
- Most commercial designs adopt a point between the two extremes (ring and fully-connected):
$>$ Grid: each node connects with its N, E, W, S neighbors
$>$ Torus: connections wrap around
$>$ Hypercube: links between nodes whose binary names differ in a single bit


## Topology Examples



Grid


Torus


Hypercube

| Criteria | Bus | Ring | 2Dtorus | 6-cube | Fully <br> connected |
| :---: | :--- | :--- | :--- | :--- | :---: |
| Performance <br> Bisection <br> bandwidth |  |  |  |  |  |
| Cost <br> Ports/switch <br> Total links |  |  |  |  |  |

## Topology Examples



Grid


Torus


Hypercube

| Criteria | Bus | Ring | 2Dtorus | 6-cube | Fully <br> connected |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Performance <br> Bisection <br> bandwidth | 1 | 2 | 16 | 32 | 1024 |
| Cost <br> Ports/switch <br> Total links | 1 | 128 | 192 | 256 | 2080 |

## k-ary d-cube

- Consider a k-ary d-cube: a d-dimension array with k elements in each dimension, there are links between elements that differ in one dimension by $1(\bmod k)$
- Number of nodes $\mathrm{N}=\mathrm{k}^{\mathrm{d}}$

Number of switches:
Switch degree
Number of links
Pins per node

Avg. routing distance:
Diameter
Bisection bandwidth : Switch complexity

Should we minimize or maximize dimension?

## k-ary d-Cube

- Consider a k-ary d-cube: a d-dimension array with k elements in each dimension, there are links between elements that differ in one dimension by $1(\bmod k)$
- Number of nodes $\mathrm{N}=\mathrm{k}^{\mathrm{d}}$

Number of switches: N
Switch degree : 2d + 1
Number of links : Nd
Pins per node : 2wd
(with no wraparound)

Should we minimize or maximize dimension?

## Routing

- Deterministic routing: given the source and destination, there exists a unique route
- Adaptive routing: a switch may alter the route in order to deal with unexpected events (faults, congestion) - more complexity in the router vs. potentially better performance
- Example of deterministic routing: dimension order routing: send packet along first dimension until destination co-ord (in that dimension) is reached, then next dimension, etc.


## Deadlock

- Deadlock happens when there is a cycle of resource dependencies - a process holds on to a resource (A) and attempts to acquire another resource ( $B$ ) - $A$ is not relinquished until $B$ is acquired


## Deadlock Example


$\begin{array}{ll}\square & \text { Packets of message 1 } \\ \square & \text { Packets of message 2 } \\ \square & \text { Packets of message 3 } \\ \square & \text { Packets of message } 4\end{array}$

Each message is attempting to make a left turn - it must acquire an output port, while still holding on to a series of input and output ports

## Deadlock-Free Proofs

- Number edges and show that all routes will traverse edges in increasing (or decreasing) order - therefore, it will be impossible to have cyclic dependencies
- Example: k-ary 2-d array with dimension routing: first route along x-dimension, then along $y$



## Breaking Deadlock I

- The earlier proof does not apply to tori because of wraparound edges
- Partition resources across multiple virtual channels
- If a wraparound edge must be used in a torus, travel on virtual channel 1, else travel on virtual channel 0


## Breaking Deadlock II

- Consider the eight possible turns in a 2-d array (note that turns lead to cycles)
- By preventing just two turns, cycles can be eliminated
- Dimension-order routing disallows four turns
- Helps avoid deadlock even in adaptive routing


West-First


North-Last


Negative-First


Can allow deadlocks

## Title

- Bullet

