
1

Lecture 24: Transactional Memory

• Topics: transactional memory implementations

2

Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Avoids deadlock

3

Design Space

• Data Versioning

 Eager: based on an undo log

 Lazy: based on a write buffer

• Conflict Detection

 Optimistic detection: check for conflicts at commit time

(proceed optimistically thru transaction)

 Pessimistic detection: every read/write checks for

conflicts (so you can abort quickly)

4

“Lazy” Implementation

• An implementation for a small-scale multiprocessor with

a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

5

“Lazy” Implementation

• When a transaction issues a read, fetch the block in

read-only mode (if not already in cache) and set the

rd-bit for that cache line

• When a transaction issues a write, fetch that block in

read-only mode (if not already in cache), set the wr-bit

for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must

be aborted (or must rely on some software mechanism

to handle saving overflowed data)

6

“Lazy” Implementation

• When a transaction reaches its end, it must now make

its writes permanent

• A central arbiter is contacted (easy on a bus-based system),

the winning transaction holds on to the bus until all written

cache line addresses are broadcasted (this is the commit)

(need not do a writeback until the line is evicted – must

simply invalidate other readers of these cache lines)

• When another transaction (that has not yet begun to commit)

sees an invalidation for a line in its rd-set, it realizes its

lack of atomicity and aborts (clears its rd- and wr-bits and

re-starts)

7

“Lazy” Implementation

• Lazy versioning: changes are made locally – the “master copy” is

updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of

the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and

reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations

for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will

commit successfully

• Starvation is possible – need additional mechanisms

8

“Lazy” Implementation – Parallel Commits

• Writes cannot be rolled back – hence, before allowing

two transactions to commit in parallel, we must ensure

that they do not conflict with each other

• One possible implementation: the central arbiter can

collect signatures from each committing transaction

(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects

a possible conflict with the rd-wr-sets of transactions

that are in the process of committing

• The “lazy” design can also work with directory protocols

9

“Eager” Implementation

• A write is made permanent immediately (we do not wait

until the end of the transaction)

• This means that if some other transaction attempts a

read, the latest value is returned and the memory may

also be updated with this latest value

• Can’t lose the old value (in case this transaction is

aborted) – hence, before the write, we copy the old

value into a log (the log is some space in virtual memory

-- the log itself may be in cache, so not too expensive)

This is eager versioning

10

“Eager” Implementation

• Since Transaction-A’s writes are made permanent

rightaway, it is possible that another Transaction-B’s

rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has

reached its end, hence, eager conflict detection): two

transactions handling the same cache line and at least

one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to

Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has

committed and can hand off the latest cache line to B

 neither transaction needs to abort

11

“Eager” Implementation

• Can lead to deadlocks: each transaction is waiting for the

other to finish

• Need a separate (hw/sw) contention manager to detect

such deadlocks and force one of them to abort

Tr-A Tr-B

write X write Y

… …

read Y read X

12

“Eager” Implementation

• Note that if Tr-B is doing a write, it may be forced to stall

because Tr-A may have done a read and does not want to

invalidate its cache line just yet

• If new reading transactions keep emerging, Tr-B may be

starved – again, need other sw/hw mechanisms to handle

starvation

• Since logs are stored in virtual memory, there is no cache

overflow problem and transactions can be large

• Commits are inexpensive (no additional step required);

Aborts are expensive (must reinstate data from logs)

13

Other Issues

• Nesting: when one transaction calls another

 flat nesting: collapse all nested transactions into one

large transaction

 closed nesting: inner transaction’s rd-wr set are included

in outer transaction’s rd-wr set on inner

commit; on an inner conflict, only the

inner transaction is re-started

 open nesting: on inner commit, its writes are committed

and not merged with outer transaction’s

commit set

• What if a transaction performs I/O?

• What if a transaction overflows out of cache?

14

Useful Rules of Thumb

• Transactions are often short – more than 95% of them will

fit in cache

• Transactions often commit successfully – less than 10%

are aborted

• 99.9% of transactions don’t perform I/O

• Transaction nesting is not common

• Amdahl’s Law again: optimize the common case!

15

Title

• Bullet

