
1

Lecture 23: Transactional Memory

• Topics: consistency model recap,

introduction to transactional memory

2

Example Programs

Initially, A = B = 0

P1 P2

A = 1 B = 1

if (B == 0) if (A == 0)

critical section critical section

Initially, A = B = 0

P1 P2 P3

A = 1

if (A == 1)

B = 1

if (B == 1)

register = A

P1 P2

Data = 2000 while (Head == 0)

Head = 1 { }

… = Data

3

Sequential Consistency

P1 P2

Instr-a Instr-A

Instr-b Instr-B

Instr-c Instr-C

Instr-d Instr-D

… …

We assume:

• Within a program, program order is preserved

• Each instruction executes atomically

• Instructions from different threads can be interleaved arbitrarily

Valid executions:

abAcBCDdeE… or ABCDEFabGc… or abcAdBe… or

aAbBcCdDeE… or …..

4

Sequential Consistency

• A multiprocessor is sequentially consistent if the result

of the execution is achieveable by maintaining program

order within a processor and interleaving accesses by

different processors in an arbitrary fashion

• Can implement sequential consistency by requiring the

following: program order, write serialization, everyone has

seen an update before a value is read – very intuitive for

the programmer, but extremely slow

• This is very slow… alternatives:

 Add optimizations to the hardware

 Offer a relaxed memory consistency model and fences

5

Fences

P1 P2

{ {

Region of code Region of code

with no races with no races

} }

Fence Fence

Acquire_lock Acquire_lock

Fence Fence

{ {

Racy code Racy code

} }

Fence Fence

Release_lock Release_lock

Fence Fence

6

Transactions

• New paradigm to simplify programming

 instead of lock-unlock, use transaction begin-end

 locks are blocking, transactions execute speculative

in the hope that there will be no conflicts

• Can yield better performance; Eliminates deadlocks

• Programmer can freely encapsulate code sections within

transactions and not worry about the impact on

performance and correctness (for the most part)

• Programmer specifies the code sections they’d like to see

execute atomically – the hardware takes care of the rest

(provides illusion of atomicity)

7

Transactions

• Transactional semantics:

 when a transaction executes, it is as if the rest of the

system is suspended and the transaction is in isolation

 the reads and writes of a transaction happen as if they

are all a single atomic operation

 if the above conditions are not met, the transaction

fails to commit (abort) and tries again

transaction begin

read shared variables

arithmetic

write shared variables

transaction end

8

Example 1

lock (lock1)

counter = counter + 1;

unlock (lock1)

transaction begin

counter = counter + 1;

transaction end

No apparent advantage to using transactions (apart from

fault resiliency)

9

Example 2

Producer-consumer relationships – producers place tasks at the tail of

a work-queue and consumers pull tasks out of the head

Enqueue Dequeue

transaction begin transaction begin

if (tail == NULL) if (head->next == NULL)

update head and tail update head and tail

else else

update tail update head

transaction end transaction end

With locks, neither thread can proceed in parallel since head/tail may be

updated – with transactions, enqueue and dequeue can proceed in

parallel – transactions will be aborted only if the queue is nearly empty

10

Example 3

Hash table implementation

transaction begin

index = hash(key);

head = bucket[index];

traverse linked list until key matches

perform operations

transaction end

Most operations will likely not conflict transactions proceed in parallel

Coarse-grain lock serialize all operations

Fine-grained locks (one for each bucket) more complexity, more storage,

concurrent reads not allowed,

concurrent writes to different elements not allowed

11

TM Implementation

Core Core

Cache Cache

• Caches track read-sets and write-sets

• Writes are made visible only at the end of the transaction

• At transaction commit, make your writes visible; others may abort

12

Detecting Conflicts – Basic Implementation

• Writes can be cached (can’t be written to memory) – if the

block needs to be evicted, flag an overflow (abort transaction

for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for

each transaction

• When another transaction commits, compare its write set

with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast

write-set (transactions can commit in parallel if their

write-sets do not intersect)

13

Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Speculative parallelization

• Avoids deadlock

• Resilient to faults

14

Design Space

• Data Versioning

 Eager: based on an undo log

 Lazy: based on a write buffer

• Conflict Detection

 Optimistic detection: check for conflicts at commit time

(proceed optimistically thru transaction)

 Pessimistic detection: every read/write checks for

conflicts (reduces work during commit)

15

Relation to LL-SC

• Transactions can be viewed as an extension of LL-SC

• LL-SC ensures that the read-modify-write for a single

variable is atomic; a transaction ensures atomicity for all

variables accessed between trans-begin and trans-end

Vers-1 Vers-2 Vers-3

ll a ll a trans-begin

ld b ll b ld a

st b sc b ld b

sc a sc a st b

st a

trans-end

16

Title

• Bullet

