
1

Lecture 22: Synchronization & Consistency

• Topics: synchronization, consistency models

(Sections 4.5-4.6)

2

Barriers

• Barriers are synchronization primitives that ensure that

some processes do not outrun others – if a process

reaches a barrier, it has to wait until every process

reaches the barrier

• When a process reaches a barrier, it acquires a lock and

increments a counter that tracks the number of processes

that have reached the barrier – it then spins on a value that

gets set by the last arriving process

• Must also make sure that every process leaves the

spinning state before one of the processes reaches the

next barrier

3

Barrier Implementation

LOCK(bar.lock);

if (bar.counter == 0)

bar.flag = 0;

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {

bar.counter = 0;

bar.flag = 1;

}

else

while (bar.flag == 0) { };

4

Sense-Reversing Barrier Implementation

local_sense = !(local_sense);

LOCK(bar.lock);

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {

bar.counter = 0;

bar.flag = local_sense;

}

else {

while (bar.flag != local_sense) { };

}

5

Coherence Vs. Consistency

• Recall that coherence guarantees (i) that a write will

eventually be seen by other processors, and (ii) write

serialization (all processors see writes to the same location

in the same order)

• The consistency model defines the ordering of writes and

reads to different memory locations – the hardware

guarantees a certain consistency model and the

programmer attempts to write correct programs with

those assumptions

6

Example Programs

Initially, A = B = 0

P1 P2

A = 1 B = 1

if (B == 0) if (A == 0)

critical section critical section

Initially, A = B = 0

P1 P2 P3

A = 1

if (A == 1)

B = 1

if (B == 1)

register = A

P1 P2

Data = 2000 while (Head == 0)

Head = 1 { }

… = Data

7

Sequential Consistency

P1 P2

Instr-a Instr-A

Instr-b Instr-B

Instr-c Instr-C

Instr-d Instr-D

… …

We assume:

• Within a program, program order is preserved

• Each instruction executes atomically

• Instructions from different threads can be interleaved arbitrarily

Valid executions:

abAcBCDdeE… or ABCDEFabGc… or abcAdBe… or

aAbBcCdDeE… or …..

8

Sequential Consistency

• Programmers assume SC; makes it much easier to

reason about program behavior

• Hardware innovations can disrupt the SC model

• For example, if we assume write buffers, or out-of-order

execution, or if we drop ACKS in the coherence protocol,

the previous programs yield unexpected outputs

9

Consistency Example - I

• Consider a multiprocessor with bus-based snooping cache

coherence and a write buffer between CPU and cache

Initially A = B = 0

P1 P2

A  1 B  1

… …

if (B == 0) if (A == 0)

Crit.Section Crit.Section

The programmer expected the

above code to implement a

lock – because of write

buffering, both processors

can enter the critical section

The consistency model lets the programmer know what assumptions

they can make about the hardware’s reordering capabilities

10

Consistency Example - 2

P1 P2

Data = 2000 while (Head == 0) { }

Head = 1 … = Data

Sequential consistency requires program order

-- the write to Data has to complete before the write to Head can begin

-- the read of Head has to complete before the read of Data can begin

11

Consistency Example - 3

Initially, A = B = 0

P1 P2 P3

A = 1

if (A == 1)

B = 1

if (B == 1)

register = A

Sequential consistency can be had if a process makes sure that

everyone has seen an update before that value is read – else,

write atomicity is violated

12

Sequential Consistency

• A multiprocessor is sequentially consistent if the result

of the execution is achieveable by maintaining program

order within a processor and interleaving accesses by

different processors in an arbitrary fashion

• The multiprocessors in the previous examples are not

sequentially consistent

• Can implement sequential consistency by requiring the

following: program order, write serialization, everyone has

seen an update before a value is read – very intuitive for

the programmer, but extremely slow

13

Relaxed Consistency Models

• We want an intuitive programming model (such as

sequential consistency) and we want high performance

• We care about data races and re-ordering constraints for

some parts of the program and not for others – hence,

we will relax some of the constraints for sequential

consistency for most of the program, but enforce them

for specific portions of the code

• Fence instructions are special instructions that require

all previous memory accesses to complete before

proceeding (sequential consistency)

14

Fences

P1 P2

{ {

Region of code Region of code

with no races with no races

} }

Fence Fence

Acquire_lock Acquire_lock

Fence Fence

{ {

Racy code Racy code

} }

Fence Fence

Release_lock Release_lock

Fence Fence

15

Relaxing Constraints

• Sequential consistency constraints can be relaxed in the

following ways (allowing higher performance):

 within a processor, a read can complete before an

earlier write to a different memory location completes

(this was made possible in the write buffer example

and is of course, not a sequentially consistent model)

 within a processor, a write can complete before an

earlier write to a different memory location completes

 within a processor, a read or write can complete before

an earlier read to a different memory location completes

 a processor can read the value written by another

processor before all processors have seen the invalidate

 a processor can read its own write before the write

is visible to other processors

16

Title

• Bullet

