Lecture 22: Synchronization & Consistency

* Topics: synchronization, consistency models
(Sections 4.5-4.6)

Barriers

 Barriers are synchronization primitives that ensure that
some processes do not outrun others — If a process
reaches a barrier, it has to wait until every process
reaches the barrier

* When a process reaches a batrrier, it acquires a lock and
Increments a counter that tracks the number of processes
that have reached the barrier — it then spins on a value that
gets set by the last arriving process

* Must also make sure that every process leaves the
spinning state before one of the processes reaches the
next barrier

Barrier Implementation

LOCK(bar.lock);

if (bar.counter == 0)
bar.flag = 0;

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {
bar.counter = 0;
bar.flag = 1;

}

else
while (bar.flag ==0) {};

Sense-Reversing Barrier Implementation

local _sense = I(local_sense);
LOCK(bar.lock);
mycount = bar.counter++;
UNLOCK(bar.lock);
if (mycount == p) {
bar.counter = 0;
bar.flag = local sense;
}
else {
while (bar.flag != local_sense) {};

}

Coherence Vs. Consistency

* Recall that coherence guarantees (i) that a write will
eventually be seen by other processors, and (ii) write
serialization (all processors see writes to the same location
In the same order)

* The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

Example Programs

Initially, A=B =0

P1 P2
A=1 B=1
if (B ==0) if (A == 0)

critical section critical section

P1 P2
Data = 2000 while (Head == 0)
Head =1 {}
... = Data

Initially, A=B =0

P1 P2 P3
A=1
if (A==1)
B=1
if (B==1)
register = A

Sequential Consistency

P1 P2
Instr-a Instr-A
Instr-b Instr-B
Instr-c Instr-C
Instr-d Instr-D

We assume:

 Within a program, program order is preserved

 Each instruction executes atomically

* Instructions from different threads can be interleaved arbitrarily

Valid executions:
abAcBCDdeE... or ABCDEFabGc... or abcAdBe... or

aAbBcCdDeE... or

Sequential Consistency

* Programmers assume SC; makes it much easier to
reason about program behavior

« Hardware innovations can disrupt the SC model
* For example, if we assume write buffers, or out-of-order

execution, or if we drop ACKS in the coherence protocol,
the previous programs yield unexpected outputs

Consistency Example - |

« Consider a multiprocessor with bus-based snooping cache
coherence and a write buffer between CPU and cache

Initially A=B =0

P1 P2
A€l B&1
if (B ==0) if (A ==0)

Crit.Section Crit.Section

The programmer expected the
above code to implement a
lock — because of write
buffering, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 9

Consistency Example - 2

P1 P2
Data = 2000 while (Head ==0) { }
Head = 1 ... = Data

Sequential consistency requires program order
-- the write to Data has to complete before the write to Head can begin
-- the read of Head has to complete before the read of Data can begin

10

Consistency Example - 3

Initially, A=B =0

Pl P2 P3
A=1
if (A==1)
B=1
if (B==1)
register = A

Sequential consistency can be had if a process makes sure that
everyone has seen an update before that value is read — else,
write atomicity is violated

11

Sequential Consistency

* A multiprocessor is sequentially consistent if the result
of the execution Is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

* The multiprocessors in the previous examples are not
sequentially consistent

« Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read — very intuitive for
the programmer, but extremely slow

12

Relaxed Consistency Models

« We want an intuitive programming model (such as
sequential consistency) and we want high performance

* We care about data races and re-ordering constraints for
some parts of the program and not for others — hence,
we will relax some of the constraints for sequential
consistency for most of the program, but enforce them
for specific portions of the code

* Fence instructions are special instructions that require
all previous memory accesses to complete before
proceeding (sequential consistency)

13

Fences

P1
{

Region of code

with no races

}

Fence
Acquire_lock
Fence

{

Racy code

}

Fence
Release lock
Fence

P2
{
Region of code
with no races

}

Fence
Acquire_lock
Fence

{

Racy code

}

Fence
Release lock
Fence 14

Relaxing Constraints

» Sequential consistency constraints can be relaxed in the
following ways (allowing higher performance):

» within a processor, a read can complete before an
earlier write to a different memory location completes
(this was made possible in the write buffer example
and is of course, not a sequentially consistent model)

» within a processor, a write can complete before an
earlier write to a different memory location completes

» within a processor, a read or write can complete before
an earlier read to a different memory location completes

» a processor can read the value written by another
processor before all processors have seen the invalidate

» a processor can read its own write before the write
IS visible to other processors "

Title

* Bullet

16

