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Lecture 22: Synchronization & Consistency

• Topics: synchronization, consistency models

(Sections 4.5-4.6)
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Barriers

• Barriers are synchronization primitives that ensure that

some processes do not outrun others – if a process

reaches a barrier, it has to wait until every process

reaches the barrier

• When a process reaches a barrier, it acquires a lock and

increments a counter that tracks the number of processes

that have reached the barrier – it then spins on a value that

gets set by the last arriving process

• Must also make sure that every process leaves the

spinning state before one of the processes reaches the

next barrier
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Barrier Implementation

LOCK(bar.lock);

if (bar.counter == 0)

bar.flag = 0;

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {

bar.counter = 0;

bar.flag = 1;

}

else

while (bar.flag == 0)  { };
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Sense-Reversing Barrier Implementation

local_sense = !(local_sense);

LOCK(bar.lock);

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {

bar.counter = 0;

bar.flag = local_sense;

}

else {

while (bar.flag != local_sense)  { };

}
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Coherence Vs. Consistency

• Recall that coherence guarantees (i) that a write will

eventually be seen by other processors, and (ii) write

serialization (all processors see writes to the same location

in the same order)

• The consistency model defines the ordering of writes and

reads to different memory locations – the hardware

guarantees a certain consistency model and the

programmer attempts to write correct programs with

those assumptions



6

Example Programs

Initially, A = B = 0

P1                                 P2

A = 1                          B = 1

if (B == 0)                   if (A == 0)

critical section            critical section

Initially, A = B = 0

P1                 P2                 P3

A = 1

if (A == 1)

B = 1

if (B == 1)

register = A

P1                         P2

Data = 2000    while (Head == 0)

Head = 1            { }

… = Data
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Sequential Consistency

P1                         P2

Instr-a                 Instr-A

Instr-b                 Instr-B

Instr-c                 Instr-C

Instr-d                 Instr-D

…                        …

We assume:

• Within a program, program order is preserved

• Each instruction executes atomically

• Instructions from different threads can be interleaved arbitrarily

Valid executions:

abAcBCDdeE…   or    ABCDEFabGc…   or   abcAdBe… or

aAbBcCdDeE…   or  …..
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Sequential Consistency

• Programmers assume SC;  makes it much easier to

reason about program behavior

• Hardware innovations can disrupt the SC model

• For example, if we assume write buffers, or out-of-order

execution, or if we drop ACKS in the coherence protocol,

the previous programs yield unexpected outputs
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Consistency Example - I

• Consider a multiprocessor with bus-based snooping cache

coherence and a write buffer between CPU and cache

Initially A = B = 0

P1                        P2

A  1 B  1

…                        …

if (B == 0)           if (A == 0)

Crit.Section         Crit.Section

The programmer expected the

above code to implement a

lock – because of write

buffering, both processors

can enter the critical section

The consistency model lets the programmer know what assumptions

they can make about the hardware’s reordering capabilities
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Consistency Example - 2

P1                             P2                       

Data = 2000         while (Head == 0)  {  }

Head = 1               … = Data

Sequential consistency requires program order

-- the write to Data has to complete before the write to Head can begin

-- the read of Head has to complete before the read of Data can begin
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Consistency Example - 3

Initially, A = B = 0

P1                 P2                         P3

A = 1

if (A == 1)

B = 1

if (B == 1)

register = A

Sequential consistency can be had if a process makes sure that

everyone has seen an update before that value is read – else, 

write atomicity is violated
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Sequential Consistency

• A multiprocessor is sequentially consistent if the result

of the execution is achieveable by maintaining program

order within a processor and interleaving accesses by

different processors in an arbitrary fashion

• The multiprocessors in the previous examples are not

sequentially consistent

• Can implement sequential consistency by requiring the

following: program order, write serialization, everyone has

seen an update before a value is read – very intuitive for

the programmer, but extremely slow 
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Relaxed Consistency Models

• We want an intuitive programming model (such as

sequential consistency) and we want high performance

• We care about data races and re-ordering constraints for

some parts of the program and not for others – hence,

we will relax some of the constraints for sequential

consistency for most of the program, but enforce them

for specific portions of the code

• Fence instructions are special instructions that require

all previous memory accesses to complete before

proceeding (sequential consistency)



14

Fences

P1                    P2

{                                             {

Region of code                       Region of code

with no races                          with no races

}                                             }

Fence                                     Fence

Acquire_lock Acquire_lock

Fence                                     Fence

{                                            {

Racy code                            Racy code

}                                            }

Fence                                   Fence

Release_lock Release_lock

Fence                                   Fence
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Relaxing Constraints

• Sequential consistency constraints can be relaxed in the

following ways (allowing higher performance):

 within a processor, a read can complete before an

earlier write to a different memory location completes

(this was made possible in the write buffer example

and is of course, not a sequentially consistent model)

 within a processor, a write can complete before an

earlier write to a different memory location completes

 within a processor, a read or write can complete before

an earlier read to a different memory location completes

 a processor can read the value written by another

processor before all processors have seen the invalidate

 a processor can read its own write before the write

is visible to other processors
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