
1

Lecture 21: Synchronization

• Topics: lock implementations 

(Sections 4.4-4.5)



2

Constructing Locks

• Applications have phases (consisting of many instructions)

that must be executed atomically, without other parallel

processes modifying the data

• A lock surrounding the data/code ensures that only one

program can be in a critical section at a time

• The hardware must provide some basic primitives that

allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence

mechanism – when a process updates a lock, other

processes will eventually see the update



3

Synchronization

• The simplest hardware primitive that greatly facilitates

synchronization implementations (locks, barriers, etc.)

is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory

• lock:    t&s register, location

bnz register, lock

CS

st location, #0



4

Caching Locks

• Spin lock: to acquire a lock, a process may enter an infinite

loop that keeps attempting a read-modify till it succeeds

• If the lock is in memory, there is heavy bus traffic  other

processes make little forward progress

• Locks can be cached:

 cache coherence ensures that a lock update is seen

by other processors

 the process that acquires the lock in exclusive state

gets to update the lock first

 spin on a local copy – the external bus sees little traffic



5

Coherence Traffic for a Lock

• If every process spins on an exchange, every exchange

instruction will attempt a write  many invalidates and

the locked value keeps changing ownership

• Hence, each process keeps reading the lock value – a read

does not generate coherence traffic and every process

spins on its locally cached copy

• When the lock owner releases the lock by writing a 0, other

copies are invalidated, each spinning process generates a

read miss, acquires a new copy, sees the 0, attempts an

exchange (requires acquiring the block in exclusive state so

the write can happen), first process to acquire the block in

exclusive state acquires the lock, others keep spinning



6

Test-and-Test-and-Set

• lock:    test   register, location

bnz   register, lock

t&s    register, location

bnz   register, lock

CS

st      location, #0



7

Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write

with very high flexibility

• LL: read a value and update a table indicating you have

read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,

the store will succeed only if the table indicates that no

other process attempted a store since the local LL (success

only if the operation was “effectively” atomic)

• SC implementations do not generate bus traffic if the

SC fails – hence, more efficient than test&test&set



8

Spin Lock with Low Coherence Traffic

lockit:    LL         R2, 0(R1)    ; load linked, generates no coherence traffic

BNEZ    R2, lockit     ; not available, keep spinning

DADDUI R2, R0, #1 ; put value 1 in R2

SC         R2, 0(R1)   ; store-conditional succeeds if no one

; updated the lock since the last LL

BEQZ    R2, lockit    ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many

bus transactions happen?



9

Spin Lock with Low Coherence Traffic

lockit:    LL         R2, 0(R1)    ; load linked, generates no coherence traffic

BNEZ    R2, lockit     ; not available, keep spinning

DADDUI R2, R0, #1 ; put value 1 in R2

SC         R2, 0(R1)   ; store-conditional succeeds if no one

; updated the lock since the last LL

BEQZ    R2, lockit    ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many

bus transactions happen?

1 write by the releaser  +  i read-miss requests  +

i responses  +  1 write by acquirer  +  0 (i-1 failed SCs)  +

i-1 read-miss requests + i-1 responses



10

Further Reducing Bandwidth Needs

• Ticket lock: every arriving process atomically picks up a

ticket and increments the ticket counter (with an LL-SC),

the process then keeps checking the now-serving

variable to see if its turn has arrived, after finishing its

turn it increments the now-serving variable

• Array-Based lock: instead of using a “now-serving”

variable, use a “now-serving” array and each process

waits on a different variable – fair, low latency, low

bandwidth, high scalability, but higher storage

• Queueing locks: the directory controller keeps track of

the order in which requests arrived – when the lock is

available, it is passed to the next in line (only one process

sees the invalidate and update)



11

Lock Vs. Optimistic Concurrency

lockit:    LL         R2, 0(R1)    

BNEZ    R2, lockit     

DADDUI R2, R0, #1 

SC         R2, 0(R1)  

BEQZ    R2, lockit 

Critical Section

ST         0(R1), #0   

tryagain: LL         R2, 0(R1)        

DADDUI R2, R2, R3

SC         R2, 0(R1)  

BEQZ    R2, tryagain

LL-SC is being used to figure out

if we were able to acquire the lock

without anyone interfering – we

then enter the critical section

If the critical section only involves

one memory location, the critical

section can be captured within the

LL-SC – instead of spinning on the

lock acquire, you may now be spinning

trying to atomically execute the CS



12

Barriers

• Barriers are synchronization primitives that ensure that

some processes do not outrun others – if a process

reaches a barrier, it has to wait until every process

reaches the barrier

• When a process reaches a barrier, it acquires a lock and

increments a counter that tracks the number of processes

that have reached the barrier – it then spins on a value that

gets set by the last arriving process

• Must also make sure that every process leaves the

spinning state before one of the processes reaches the

next barrier



13

Barrier Implementation

LOCK(bar.lock);

if (bar.counter == 0)

bar.flag = 0;

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {

bar.counter = 0;

bar.flag = 1;

}

else

while (bar.flag == 0)  { };



14

Sense-Reversing Barrier Implementation

local_sense = !(local_sense);

LOCK(bar.lock);

mycount = bar.counter++;

UNLOCK(bar.lock);

if (mycount == p) {

bar.counter = 0;

bar.flag = local_sense;

}

else {

while (bar.flag != local_sense)  { };

}



15

Title

• Bullet


