
1

Lecture 19: Shared-Memory Multiprocessors

• Topics: coherence protocols for symmetric

shared-memory multiprocessors (Sections 4.1-4.2)

2

Ocean Kernel

Procedure Solve(A)

begin

diff = done = 0;

while (!done) do

diff = 0;

for i 1 to n do

for j 1 to n do

temp = A[i,j];

A[i,j] 0.2 * (A[i,j] + neighbors);

diff += abs(A[i,j] – temp);

end for

end for

if (diff < TOL) then done = 1;

end while

end procedure

3

Shared Address Space Model

int n, nprocs;

float **A, diff;

LOCKDEC(diff_lock);

BARDEC(bar1);

main()

begin

read(n); read(nprocs);

A G_MALLOC();

initialize (A);

CREATE (nprocs,Solve,A);

WAIT_FOR_END (nprocs);

end main

procedure Solve(A)

int i, j, pid, done=0;

float temp, mydiff=0;

int mymin = 1 + (pid * n/procs);

int mymax = mymin + n/nprocs -1;

while (!done) do

mydiff = diff = 0;

BARRIER(bar1,nprocs);

for i mymin to mymax

for j 1 to n do

…

endfor

endfor

LOCK(diff_lock);

diff += mydiff;

UNLOCK(diff_lock);

BARRIER (bar1, nprocs);

if (diff < TOL) then done = 1;

BARRIER (bar1, nprocs);

endwhile

4

Message Passing Model

main()

read(n); read(nprocs);

CREATE (nprocs-1, Solve);

Solve();

WAIT_FOR_END (nprocs-1);

procedure Solve()

int i, j, pid, nn = n/nprocs, done=0;

float temp, tempdiff, mydiff = 0;

myA malloc(…)

initialize(myA);

while (!done) do

mydiff = 0;

if (pid != 0)

SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do

for j 1 to n do

…

endfor

endfor

if (pid != 0)

SEND(mydiff, 1, 0, DIFF);

RECEIVE(done, 1, 0, DONE);

else

for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);

mydiff += tempdiff;

endfor

if (mydiff < TOL) done = 1;

for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);

endfor

endif

endwhile

5

Shared-Memory Vs. Message-Passing

Shared-memory:

• Well-understood programming model

• Communication is implicit and hardware handles protection

• Hardware-controlled caching

Message-passing:

• No cache coherence simpler hardware

• Explicit communication easier for the programmer to

restructure code

• Sender can initiate data transfer

6

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

7

Distributed Memory Multiprocessors

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Interconnection network

8

SMPs

• Centralized main memory and many caches many

copies of the same data

• A system is cache coherent if a read returns the most

recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory

0 - - 1

1 CPU-A reads X 1 - 1

2 CPU-B reads X 1 1 1

3 CPU-A stores 0 in X 0 1 0

9

Cache Coherence

A memory system is coherent if:

• P writes to X; no other processor writes to X; P reads X

and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient

time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are

seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”

before the effect of a processor is seen by others

10

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track

of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing

status of that block – all cache controllers monitor the

shared bus so they can update the sharing status of the

block, if necessary

Write-invalidate: a processor gains exclusive access of

a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other

shared copies of that block

11

Design Issues

• Invalidate

• Find data

• Writeback / writethrough

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

• Cache block states

• Contention for tags

• Enforcing write serialization

12

SMP Example

Processor

A

Caches

Processor

B

Caches

Processor

C

Caches

Processor

D

Caches

Main Memory I/O System

A: Rd X

B: Rd X

C: Rd X

A: Wr X

A: Wr X

C: Wr X

B: Rd X

A: Rd X

A: Rd Y

B: Wr X

B: Rd Y

B: Wr X

B: Wr Y

13

SMP Example

A: Rd X

B: Rd X

C: Rd X

A: Wr X

A: Wr X

C: Wr X

B: Rd X

A: Rd X

A: Rd Y

B: Wr X

B: Rd Y

B: Wr X

B: Wr Y

A B C

14

SMP Example

A: Rd X S

B: Rd X S S

C: Rd X S S S

A: Wr X E I I

A: Wr X E I I

C: Wr X I I E

B: Rd X I S S

A: Rd X S S S

A: Rd Y S (Y) S (X) S (X)

B: Wr X S (Y) E (X) I

B: Rd Y S (Y) S (Y) I

B: Wr X S (Y) E (X) I

B: Wr Y I E (Y) I

A B C

15

Example Protocol

Request Source Block state Action

Read hit Proc Shared/excl Read data in cache

Read miss Proc Invalid Place read miss on bus

Read miss Proc Shared Conflict miss: place read miss on bus

Read miss Proc Exclusive Conflict miss: write back block, place

read miss on bus

Write hit Proc Exclusive Write data in cache

Write hit Proc Shared Place write miss on bus

Write miss Proc Invalid Place write miss on bus

Write miss Proc Shared Conflict miss: place write miss on bus

Write miss Proc Exclusive Conflict miss: write back, place write

miss on bus

Read miss Bus Shared No action; allow memory to respond

Read miss Bus Exclusive Place block on bus; change to shared

Write miss Bus Shared Invalidate block

Write miss Bus Exclusive Write back block; change to invalid

16

Coherence Protocols

• Two conditions for cache coherence:

 write propagation

 write serialization

• Cache coherence protocols:

 snooping

 directory-based

 write-update

 write-invalidate

17

Title

• Bullet

