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Lecture 18: Large Caches, Multiprocessors

• Today:  NUCA caches, multiprocessors (Sections 4.1-4.2)

• Reminder: assignment 5 due Thursday  (don’t

procrastinate!)
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Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

The cache controller 
forwards address requests
to the appropriate L2 bank

and handles coherence
operations

Distributed Shared Cache
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Distributed Shared Cache

• The L2 (or L3) can be a large shared cache, but is

physically partitioned into banks and distributed on chip

• Each core (tile) has one L2 cache bank adjacent to it

• One bank stores a subset of “sets” and all ways for that set

• OS-based first-touch page coloring can force a thread’s

pages to have physical page numbers that map to the

thread’s local L2 bank

Physical Address              | color |

Physical page # Cache
Index
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UCA and NUCA

• The small-sized caches so far have all been uniform cache

access: the latency for any access is a constant, no matter

where data is found

• For a large multi-megabyte cache, it is expensive to limit

access time by the worst case delay: hence, non-uniform

cache architecture

• The distributed shared cache is an example of a NUCA

cache:  variable latency to each bank
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NUCA Design Space

• Distribute Sets: Static-NUCA: Each block has a unique

location; easy to find data; page coloring for locality; page

migration if initial mapping is sub-optimal

• Distribute Ways: Dynamic-NUCA: More flexibility in block

placement; complicated search mechanisms; blocks

migrate to be closer to their accessor

• Private data are easy to handle;  Shared data must be

placed at the center-of-gravity of accesses
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Prefetching

• Hardware prefetching can be employed for any of the

cache levels

• It can introduce cache pollution – prefetched data is

often placed in a separate prefetch buffer to avoid

pollution – this buffer must be looked up in parallel

with the cache access

• Aggressive prefetching increases “coverage”, but leads

to a reduction in “accuracy”  wasted memory bandwidth

• Prefetches must be timely: they must be issued sufficiently

in advance to hide the latency, but not too early (to avoid

pollution and eviction before use)
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Stream Buffers

• Simplest form of prefetch: on every miss, bring in

multiple cache lines

• When you read the top of the queue, bring in the next line

L1
Stream buffer

Sequential lines
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Stride-Based Prefetching

• For each load, keep track of the last address accessed

by the load and a possibly consistent stride

• FSM detects consistent stride and issues prefetches

init

trans

steady

no-pred

incorrect

correct

incorrect

(update stride)

correct

correct

correct

incorrect

(update stride)

incorrect

(update stride)

tag prev_addr stride statePC
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Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going

through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with

off-the-shelf computers, most flexibility
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Memory Organization - I

• Centralized shared-memory multiprocessor   or

Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized

memory – since all processors see the same memory

organization  uniform memory access (UMA)

• Shared-memory because all processors can access the

entire memory address space

• Can centralized memory emerge as a bandwidth

bottleneck? – not if you have large caches and employ

fewer than a dozen processors
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SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Memory Organization - II

• For higher scalability, memory is distributed among

processors  distributed memory multiprocessors

• If one processor can directly address the memory local

to another processor, the address space is shared 

distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to

communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local

memory has lower latency than remote memory
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Distributed Memory Multiprocessors

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Interconnection network
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Shared-Memory Vs. Message-Passing

Shared-memory:

• Well-understood programming model

• Communication is implicit and hardware handles protection

• Hardware-controlled caching

Message-passing:

• No cache coherence  simpler hardware

• Explicit communication  easier for the programmer to

restructure code

• Sender can initiate data transfer
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Ocean Kernel

Procedure Solve(A)

begin

diff = done = 0;

while (!done) do

diff = 0;

for i  1 to n do

for j  1 to n do

temp = A[i,j];

A[i,j]  0.2 * (A[i,j] + neighbors);

diff += abs(A[i,j] – temp);

end for

end for

if (diff < TOL) then done = 1;

end while

end procedure 
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Shared Address Space Model

int  n, nprocs;

float  **A, diff;

LOCKDEC(diff_lock);

BARDEC(bar1);

main()

begin

read(n); read(nprocs);

A  G_MALLOC();

initialize (A);

CREATE (nprocs,Solve,A);

WAIT_FOR_END (nprocs);

end main

procedure Solve(A)

int i, j, pid, done=0;

float temp, mydiff=0;

int mymin = 1 + (pid * n/procs);

int mymax = mymin + n/nprocs -1;

while (!done) do

mydiff = diff = 0;

BARRIER(bar1,nprocs);

for i  mymin to mymax

for j  1 to n do

…

endfor

endfor

LOCK(diff_lock);

diff += mydiff;

UNLOCK(diff_lock);

BARRIER (bar1, nprocs);

if (diff < TOL) then done = 1;

BARRIER (bar1, nprocs);

endwhile
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Message Passing Model

main()

read(n); read(nprocs);

CREATE (nprocs-1, Solve);

Solve();

WAIT_FOR_END (nprocs-1);

procedure Solve()

int i, j, pid, nn = n/nprocs, done=0;

float temp, tempdiff, mydiff = 0;

myA  malloc(…)

initialize(myA);

while (!done) do

mydiff = 0;

if (pid != 0) 

SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i  1 to nn do

for j  1 to n do

…

endfor

endfor

if (pid != 0)

SEND(mydiff, 1, 0, DIFF);

RECEIVE(done, 1, 0, DONE);

else

for i  1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);

mydiff += tempdiff;

endfor

if  (mydiff < TOL)  done = 1;

for i  1 to nprocs-1  do

SEND(done, 1, I, DONE);

endfor

endif

endwhile
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