
Name and ID:

CS / ECE 6810 Midterm Exam - Oct 21st 2008

Notes: This is an open notes and open book exam. If necessary, make reasonable assumptions and clearly
state them. The only clarifications you may ask for during theexam are definitions of terms. You may use
calculators. Laptops are allowed if you want to browse through class material (textbook CD, your notes,
etc.), but you are not allowed to get on-line. Complete your answers in the space provided (including the
back-side of each page). Confirm that you have 7 questions on 6pages, followed by a blank page. Turn in
your answer sheets before 10:40am.

1. Performance Summaries. You have designed an innovation that improves the CPI of two programs
in a benchmark suite in the following way:

Program A B
CPI of baseline processor 1.2 0.6
CPI with new innovation 1.0 0.5

The additional circuits required by your innovation cause the clock speed to reduce by 5%. What is
the speedup from your innovation if your workload is such that each program executes for an equal
number of cycles?(8 points)

2. Branch Predictors. Consider the following tournament branch predictor that employs a selector with
4K entries (2-bit saturating counters). The selector picksa prediction out of either a global predictor
(10-bit global history is XOR-ed with 10 bits of branch PC to index into 3-bit saturating counters) or
a local predictor (8 bits of branch PC index into level-1, 8 bits of local history are concatenated with
2 bits of branch PC to generate the index into level-2 that has2-bit saturating counters). What is the
total capacity of the entire branch prediction system?(6 points)

1



3. Bypassing. Consider the following in-order pipeline:

Bpred:I-cache:Decode:Decode:Regrd:IntAdd:WB
:Effadd:DCache:Dcache:Dcache:WB
:FPA1:FPA2:FPA3:WB

After register-read, Integer-adds go through “IntAdd” and“WB” (register writeback). Loads and
stores go through “Effadd” (where the load/store address iscalculated), then three data-cache stages,
and finally the “WB” stage. Floating-point adds go through three “FPA” stages and then “WB”.
What are the stall cycles introduced between the following pairs of successive instructionswith and
without full bypassing? Assume the write happens in the first half of the cycle and the read happens
in the second half of the cycle. (Show at least a couple of pipeline diagrams to convince me that you
have understood the concepts; don’t just provide the final numbers.)(20 points)

(a) Int-add, providing the data for a store

(b) Int-add, providing the input for an Int-add

(c) Load, providing data for an Int-add

(d) FP-add, followed by dependent FP-add

(e) FP-add, providing the data for a store

2



4. Out-of-Order Execution. Consider an out-of-order processor similar to the one described in class
and in assignment 4. The assumptions are re-stated below. The only notable changes are (i) that the
architecture has 32 logical registers and 34 physical registers, and (ii) the processor has a width of
2 (only up to two instructions can be fetched, decoded, renamed, issued, committed in a cycle). On
power up, the following program starts executing (to simplify the problem, some of the initialization
code is not shown and you can ignore that code).

L.D R1, 0(R2)
L.D R3, 0(R4)
ADD.D R1, R1, R3
ADD.D R2, R2, R4
BNE R2, R4, brtarget
ADD.D R2, R1, R3

(i) Show the renamed version of this code.(5 points)

(ii) Show when each instruction gets placed in the issue queue, leaves the issue queue, completes, and
commits.(15 points)

Assumptions: Assume that branch prediction is perfect for asimple program like this. With the help of
a trace cache, even fetch is perfect. Assume that caches are perfect as well. Assume that the dependent
of an ADD.D instruction can leave the issue queue in the cycleright after the ADD.D. Assume that
the dependent of an L.D cannot leave in the next cycle, but thecycle after that. Assume a ROB, an
issue queue, and an LSQ with 20 entries each. When the thread starts executing, its logical register
LR1 is mapped to physical register PR1, LR2 is mapped to PR2, and so on. An instruction goes
through 5 pipeline stages before it gets placed in the issue queue and an additional 5 pipeline stages
(6 for a LD/ST) after it leaves the issue queue (in other words, an instruction will take a minimum of
11 cycles to go through the pipeline). When determining if a L.D can issue, you need not check to see
if previous store addresses have been resolved (just to makethe problem simpler).

3



5. Multi-Core Processors. Today’s best Intel processors are quad-core. What kind of processor will
you architect for 2013, if your workload resembles the following and you are attempting to maximize
performance? (Note that you receive points for thoughtful arguments, not an arbitrary design.)(12
points)

• 30% of the programs you run are single-threaded and have a high degree of instruction-level
parallelism (ILP)

• 40% of the programs you run are single-threaded and have a lowdegree of ILP

• 25% of the programs you run can be partitioned into a small number of threads (less than 16
threads)

• 5% of the programs you run can be partitioned into a large number of threads (greater than 16
threads)

4



6. Memory Dependences. Describe the design of a prediction mechanism that helps overcome stalls in
the LSQ because of unresolved store addresses. What is the impact of this innovation on power and
energy of the processor?(8 points)

Can you come up with another simple prediction mechanism forthe exact same situation (a load
address in the LSQ that cannot issue because of an earlier unresolved store address) that will help
save cycles and that will not require any corrective measures in case the store address happens to
conflict with the load address?(6 points)

5



7. Loop Scheduling. Consider a basic in-order pipeline with bypassing (one instruction in each pipeline
stage in any cycle). The pipeline has been extended to handleFP add and FP mult. Assume the
following delays between dependent instructions:

(a) Load feeding any instruction: 2 stall cycles

(b) FP MULT feeding any instruction (except stores): 4 stallcycles

(c) FP MULT feeding store: 3 stall cycles

(d) Int add feeding any instruction: 0 stall cycles

(e) A conditional branch has 1 delay slot (an instruction is fetched in the cycle after the branch
without knowing the outcome of the branch and is executed to completion)

Below is the source code and default assembly code for a loop.

Assembly code Source code
Loop: L.D F2, 0(R1) for (i=1000;i>0;i--) {

MULT.D F3, F2, F1 x[i] = y[i] * s;
S.D F3, 0(R2) }
DADDUI R1, R1, #-8
DADDUI R2, R2, #-8
BNE R1, R3, Loop
NOP

(i) Show the schedule (what instruction issues in what cycle) for the default code.(3 points)
(ii) How should the compiler order instructions to minimizestalls (without unrolling)? Show the
schedule. How many cycles can you save per iteration, compared to the default schedule?(4 points)
(iii) How many times must the loop be unrolled to eliminate stall cycles? Show the schedule for the
unrolled code.(8 points)
(iv) Show the software pipelined version of the code.(5 points)

6



7


