Nameand I D:

CS/ ECE 6810 Midterm Exam - Oct 21st 2008

Notes: This is an open notes and open book exam. If necessary, masenable assumptions and clearly
state them. The only clarifications you may ask for duringek@m are definitions of terms. You may use
calculators. Laptops are allowed if you want to browse tgroalass material (textbook CD, your notes,
etc.), but you are not allowed to get on-line. Complete yowawaers in the space provided (including the
back-side of each page). Confirm that you have 7 questionspagés, followed by a blank page. Turn in
your answer sheets before 10:40am.

1. Performance Summaries. You have designed an innovation that improves the CPI of tegnams
in a benchmark suite in the following way:

Program A B
CPlI of baseline processor 1.2

0.6
CPlI with new innovation 1.0 0.5
The additional circuits required by your innovation cause ¢tlock speed to reduce by 5%. What is
the speedup from your innovation if your workload is such #&ch program executes for an equal

number of cycles?8 paints)

2. Branch Predictors. Consider the following tournament branch predictor thapleys a selector with
4K entries (2-bit saturating counters). The selector paksediction out of either a global predictor
(10-bit global history is XOR-ed with 10 bits of branch PC maléx into 3-bit saturating counters) or
a local predictor (8 bits of branch PC index into level-1, & lf local history are concatenated with
2 bits of branch PC to generate the index into level-2 thatZabi saturating counters). What is the
total capacity of the entire branch prediction systegpoints)

3. Bypassing. Consider the following in-order pipeline:

Bpr ed: | - cache: Decode: Decode: Regrd: | nt Add: \B
: Ef f add: DCache: Dcache: Dcache: V\B
: FPAl: FPA2: FPA3: \\B

After register-read, Integer-adds go through “IntAdd” &wdB” (register writeback). Loads and
stores go through “Effadd” (where the load/store addresalulated), then three data-cache stages,
and finally the “WB” stage. Floating-point adds go througheth “FPA’ stages and then “WB”.
What are the stall cycles introduced between the followiaigspof successive instructiomgth and
without full bypassing? Assume the write happens in the first halhefdycle and the read happens
in the second half of the cycle. (Show at least a couple oflipipeliagrams to convince me that you
have understood the concepts; don't just provide the finalbmrs.)(20 points)

(a) Int-add, providing the data for a store
(b) Int-add, providing the input for an Int-add
(c) Load, providing data for an Int-add

(d) FP-add, followed by dependent FP-add
(e) FP-add, providing the data for a store

4. Out-of-Order Execution. Consider an out-of-order processor similar to the one destiin class
and in assignment 4. The assumptions are re-stated bel@vorili notable changes are (i) that the
architecture has 32 logical registers and 34 physical texgisand (ii) the processor has a width of
2 (only up to two instructions can be fetched, decoded, redamssued, committed in a cycle). On
power up, the following program starts executing (to sifygie problem, some of the initialization
code is not shown and you can ignore that code).

L.D Rl, 0(R2)

L.D R3, O(R4)

ADD.D R1, R1, R3
ADD.D R2, R2, R4

BNE R2, R4, brtarget

ADD.D R2, Rl, R3

(i) Show the renamed version of this cod®points)

(i) Show when each instruction gets placed in the issue gjueaves the issue queue, completes, and
commits. (15 points)

Assumptions: Assume that branch prediction is perfect &mgle program like this. With the help of
atrace cache, even fetch is perfect. Assume that cachesréeetms well. Assume that the dependent
of an ADD.D instruction can leave the issue queue in the cyight after the ADD.D. Assume that
the dependent of an L.D cannot leave in the next cycle, butybke after that. Assume a ROB, an
issue queue, and an LSQ with 20 entries each. When the thtasl executing, its logical register
LR1 is mapped to physical register PR1, LR2 is mapped to PR@,sa on. An instruction goes
through 5 pipeline stages before it gets placed in the isseeagand an additional 5 pipeline stages
(6 for a LD/ST) after it leaves the issue queue (in other woadsinstruction will take a minimum of
11 cycles to go through the pipeline). When determining if@ €an issue, you need not check to see
if previous store addresses have been resolved (just to thalgroblem simpler).

5. Multi-Core Processors. Today’s best Intel processors are quad-core. What kind afgasor will
you architect for 2013, if your workload resembles the foilog and you are attempting to maximize
performance? (Note that you receive points for thoughtfgleents, not an arbitrary designj2
points)

e 30% of the programs you run are single-threaded and havehadsigree of instruction-level
parallelism (ILP)
e 40% of the programs you run are single-threaded and have ddgvee of ILP

e 25% of the programs you run can be partitioned into a smallbmimof threads (less than 16
threads)

e 5% of the programs you run can be partitioned into a large murabthreads (greater than 16
threads)

6. Memory Dependences. Describe the design of a prediction mechanism that helpsore stalls in
the LSQ because of unresolved store addresses. What is plagtiof this innovation on power and
energy of the processo(8 paoints)

Can you come up with another simple prediction mechanisnihferexact same situation (a load
address in the LSQ that cannot issue because of an earliesalved store address) that will help
save cycles and that will not require any corrective measurecase the store address happens to
conflict with the load addresg® points)

7. Loop Scheduling. Consider a basic in-order pipeline with bypassing (oneturesion in each pipeline
stage in any cycle). The pipeline has been extended to hdilladd and FP mult. Assume the
following delays between dependent instructions:

(a) Load feeding any instruction: 2 stall cycles

(b) FP MULT feeding any instruction (except stores): 4 statles

(c) FP MULT feeding store: 3 stall cycles

(d) Int add feeding any instruction: O stall cycles

(e) A conditional branch has 1 delay slot (an instructioneigtied in the cycle after the branch
without knowing the outcome of the branch and is executedtoptetion)

Below is the source code and default assembly code for a loop.

Assenbl y code Sour ce code
Loop: L.D F2, O(R1) for (i=1000;i>0;i--) {
MIULT.D F3, F2, F1 x[i] =y[i] * s;
S.D F3, 0(R2) }

DADDU R1, R1, #-8
DADDU R2, R2, #-8
BNE R1, R3, Loop
NOP

(i) Show the schedule (what instruction issues in what Qyfdlethe default code(3 points)

(i) How should the compiler order instructions to minimigells (without unrolling)? Show the
schedule. How many cycles can you save per iteration, cadparthe default schedulg2 points)

(i) How many times must the loop be unrolled to eliminatalistycles? Show the schedule for the
unrolled code(8 points)

(iv) Show the software pipelined version of the cofiepaints)

