Static Scheduling, VLIW, EPIC
& Speculation

HW support for better compiler scheduling

VLIW/EPIC idea & IPF example

Beating the IPC=1 Asymptote

* Superscalar
= static/ piler
» common In embedded space MIPS & ARM

= dynamic scheduled

hadulad

» HW sch g via board/T pp! h
* VLIW
= long instruction word tains set of independent ops
I Int/Br I Int/Ld-St I FP+/- I FPmul/div I

= key - compiler schedule and hazard detection (s adv.)
» each slot goes to a particular type of XU
+ simllar to reservation station role
= problem In high performance practice
» need to be conservative w.r.t. run time activities

« data branch
» ﬁc):. -oitzd some HW to make less vative but probabl
W) Sy o e ~ csest0 W) by of e : csesto
VLIW History “Itanic”

* As usual It’s not new
= late 60’s early 70’s — microcode
» same ldea, different granularity
= 80’s (textbook inaccurate on this)
» Cydrome Cydra-5 (Rau/UIUC) & Multiflow (Fisher/Yale)

P (Cray llke ona
« killer micro ate them and the companies cratered
* both Rau and Fisher go to HP to develop PA-WW
- note both were complier types (Fisher Inspired by dataflow geeks)

= 90’s
» HP wants out of process business, Intel wants a server line
» HP & Intel Jointly develop and produce Itanlum
* 2001 first release of “Merced” & IA-64

= Now
» AMD shocks x86 land w/ 64-bit architecture at MPF 2000
» poor I1A-64 i per f Intel to follow suit

» 1A-64 = IPF still happening
* now all Intel but “Itanic” problems persist

School of Computing

Unlversity of Utah 3 CS6810

V)

* Interesting quotes:
= John Dvorak (journalist) article
» “How the Itanlum killed the Computer Industry”
= Ashlee Vance (tech columnist)
» und + product y
* “turned the product Into a Joke In the semiconductor Industry”
= Donald Knuth
» “gupposed to be terriffic — untll it tumed out that the wished-for
il were basi impossible to write”

 However
= jll

some i
» appl h highly
= Tukwila (4 core IPF)
» “what rhymes with Godzllla and has enough cache to take out
Tokyo?”
» 4 FB-Dimm channels
* a move to dominate data-center now called “Cloud” apps

g architectural tactics
In the bedded space

School of Computing

Unlversity of Utah 4 CS6810

V)

Page 1

Tukwila

30MB L2$
total

FET count | Voltage | Power
34 GB/s memory b/w Core logic 430M | 09-1.15v | 100w thr Jcore target
96 GB/s skt-skt b/w Sys Int 157M |081.15v | 30w . “
L3cache | 1,420M | 110V 20w de_ll\.lerlyt realtsoon 2";‘;';
10 logic M| 110V 20w original target was
Chip Total | 2.0468 170w € OUCH

QPl is Intel's response to AMD Hypertransport, 2 fbd’s missing on RHS

School of Computing

VLIW Achilles’ Heel

* Code compatibility
= backwards compatibility
» always a bit of a boat anchor
= compiler schedules but what if the machine changes and
you don’t have the source code?
= oops
¢ Solutions
= Transmeta approach
a ic object code ¢ 1ogi
* not wiidly different than VM + dynamic Issue
= IPF approach
» don't be devout about VLIW
+ add some hardware support to allow some dynamic information

»

W) university of Utah s cses10 U] 3:?:::;;?:;:%‘:::"9 6 csea10
Itanium Example IPF Instructions and Slots
* Reglsters * Instruction types
= 32 64-bit + poison bit flag GPR’s = A=int ALU
= 128 82-bit FPR’s = 1 = shifts, bit-tests, moves
» 2 extra exponent bits over IEEE 754 80-bit standard = M = memory access
= 64 1-bit predication flags (single register) = F = floats
= 8 64-bit Indirect branch reglsters = B = branches
= large set of special purpose regs = L+X = extended | diates, stop, nops
» 1/0, system, memory map, OS interface « Instruction word slots
» rich set of performance counters
= 1= Aorl types
* Register stack + M= A or M types
= 128 architected reglsters « F =F types
» 0-31 are the GPR’s « B =B types
» 32-127 are on the stack (cached or not)
+ special HW and * L¥X = L+X types
» speclal Instr stack frame save and restore
W) University of Utah ’ cses10 W) University of Utan . cses10

Page 2

IPF Groups and Bundles

* Instruction group
= set of parallel instructions
= arbitrary length w/ explicit stop bit
¢ Instruction bundle = 128 bits
= a subset of a group that gets executed/cycle
= contains pre-decode tag
» 5 bits Indicates what the bundie order contains what the
bundie contalns
* permutations (5,3) = 20 5 5 bits
» 3 41-bit In the
= 2 bundles d ded and
» on Merced and McKinley
» key:

ted per cycle

IPF Predication and Speculation

* Most instructions predicated on a predicate flag
= 10 compare types
» result goes to 2 predication flags (dual rall encoding)
¢ Speculation
= GPR’s have a poison bit (indicating data validity)
» Intel calls them NAT's (Not a Thing)
= FPR’s indicate poison by NATVal
» , eXp t legal range
* hence the extra exponent bits
» Interesting cholce
= advanced loads

» loads promoted over stores
* return value to ALAT table (value, dest. reg, and mem. addr)

« complier generates the group and code Into » if api store ting later mem addr
+ HW decldes decode and Issue rate « ALAT i i and i i
» Interesting wrinkie on more common write buffer

School of Computing School of Computing

W) university of Utah ° cses10 W) university of Utah 1o csea10

IPF Pipe Merced Specint Performance

o XU’s
= 2P’s, M’s, F’s, 3-B’s, 1 L+X

¢ Issue 2 bundles = 6 instructions max

* Pipe - 10 macro stages n
= IPG - prefetch 2 bundles OOPS!
= Fetch - decode based on
* Rotate - rotate bundle to align the stops 800 MHz
= EXP - hand Instructions to the XU’s - Issue Itanium
= REN - rename registers
= WLD - bypass and access reg. file
= REG - checks reglster scoreboard depend les (dy !

stall if not cleared)
= EXE - execute
= DET - detect exceptions and post NAT’s
= WRB - write back 29SS LS Al s
hool i T -
W) School of Computing 1 Cs6810 W) Dottty ot tean 12 Cs6810

University of Utah

Page 3

SpecFP is Better

Newer versions close integer gap
but x86 is still better

New Tukwila focus on memory
and socket to socket interconnect
—— may prove to win

BUT 8 core Nehalem waits in the
wings with QPI as well

Philips Trimedia TM32

¢ Pure VLIW for embedded space
= no HW hazard detection
» compller does all
» saves runtime energy and delay
= no virtual memory
» | J don’t g
* no TLB and alignment issues
= main problem

» code bloat
* Instruction memory Is limited In embedded devices
. to Isa

» pure SW schedule

Time will tell « large number of explicit NOPs
School of Computing School of Computing
W) university of Utah 13 Cs6810 W) university of Utah 14 cs6810

TM32: Performance on EEMBC

B TM1300 “out of the box"
- TM1300 “out of the box" 16.0

B TM1300 optimized

200 11 o 71300 optimized N 140
B NEC VRS5000
= NEC VR5000 120

10.0 Code size relative
to VR4122

Performance relative
to NEC VR4122

50 [o

00
Compress Decompress Gray-scale RGBto RGBto Geometric
JPEG JPEG fiter CMYK via mean

©2003 Elsevier Science (USA). Al rights reserved.

Transmeta Crusoe

* Dynamic code morphing
= Boris Babayan’s idea (St. Petersburg IPM)
= x86 to VLIW In front end
» table hased so adds post manufacture flexibllity
+ and some fault tolerance

» 5 slots: risc style IU, compute (IU, FU, multl-media U), memory,
branch, immediate (32 bits used by another instruction)

» 4 ops/128-bit-slot

* 2 options
- ALU,
- memory, compute, ALU, branch

* Speculation support
= shadowed register files

= program controlled store buvver
» SW with auto-roliback

= speculative loads - (ALAT like)
= conditional move Instruction

» hetter than full p IMHO
School of Computing School of Computing
W) university of Utah 1 €s6810 W) university of Utah 16 €s6810

Page 4

Crusoe Performance

* Weak (in a word)
= early netbook like devices
» 10 minutes to boot up - UGHIly
¢ But in terms of power per workload it looks good
= MP3 playback
» 500 MHz, 1.6V Pentlum M - 0.672 watts
» 400 MHz, 1.5V TM3200 = 0.214 watts (32% of M)
= DVD playback
» M= 1,13 watts
» TM = .479 watts (42% of M)

= difference
» energy/workload unit Is better metric
* power for media p Isn’t bad though

» TM3200 barely kept to real-time schedule
» Pentlum lIl M - had much more headroom

School of Computing

University of Utah C86810

V)

Compiler Support for ILP

* Easier if:
= non cyclic dependencies
» e.g. loop carrled
= recurrent dependencies
» dependency n loops away?
* unroll n-1
= afflne array Index calculations
» address =al + b
* 11s loop Index, a & b are constants
+ compiler can know when conflict exists
* Harder if:
= indirect references
» via pointer
» via array of -
= false dependency
» for some data values a dependency may exist but It Is rare
+ compiler has to be conservative

matrix

School of Computing

University of Utah Cs6810

18

U)

Compiler Techniques

* Already seen (focus on loops)
= branch prediction, unrolling, SW pipelining
» note for static p
profiling
¢ Add trace scheduling (focus on conditionals within a
loop)
= 2 separate phases
» trace selection
« predict multiple branches to give long sequence of Instructions
* each Isa trace
. i on how
» trace compaction
« global Instruction scheduling over entire trace
- tricky bit moving Instructions across predicted branch
- potentlal change to the
. based on
- exceptions become an Issue
- If speculate wrong then clean-up Is required

- cost of clean-up becomes a conslideration
- asls of being correct

Is a result of

School of Computing

University of Utah CS6810

19

V)

Start with Basic Block

¢ If then else Is In the Inner loop

Alll = Afl) + B]

Profile indicates shaded
path is the most common

School of Computing

University of Utah CS6810

20

V)

Page 5

Unroll 2+ 2 Trace

* Problem is if the unpredicted path
= trace now has multiple entries and exits

All = ATl + B

No problem if predicted path

happens most of the time
Trace extt

mutliple exit and entry is
hard to schedule

 — L

All= Al + Bl

F

compiler cost function is
complex so it’s hard to
know what the best option
really is

B
Trace exit

Trace entrance
All = Al + Bl

Superblocks

* Trace-like idea
= but single entry multiple exit
» code tlon now only exit

» on exit any moved and “should have been” controlied code
must be compensated for

= tail duplication
» handles any remalning body loops
» and p tes for the “should have been” code

School of Computing

School of Computing
W) university of Utah 7 cses10 W) university of Utah 2 csea10
Example (no compensation) Improving on Branch Prediction
* Branch Target Buffer (opus 1)
= note books description is a bit strange (Fig 2.22)
* why?
Look up Predicted PC
Number of
entris
inbranch
(arget
ter
S not predicted to be Branch
branch; proceed normally predicted
aken o1
P should bo uso as the noxt PO
School of Computing 23 CS6810 mj School of Computing 24 CS6810

V)

University of Utah

University of Utah

Page 6

Better Version (1 branch delay slot)

Send PC to memory and
branch-target buffer

Entry found in
branch-target
buffer?

s
instruction

Send out
predicted
PC

branch?

Normal
instruction
execution

v ' i}
Enter Wispredicted branch, | Branch correctly
branch instruction I | il fetched instructon; rodictod;
restart feich at other [continue execution
target; delete entry with no stalls
rom target buffer

target buffer

Branch Folding

* BTB holds target instruction rather than PC
= for n-i this ti
» can already hold d
= creates 0 cycle branch delay
= problem?

rather than fetched version

School of Computing School of Computing
W) university of Utah B Cs6810 W) university of Utah 2 cs6810
Branch Folding Concluding Remarks
* BTB holds target Instruction rather than PC * At this point we’ve explored 2 muitiple Issue domalns
= for this n instr = superscalar and VLIW
» can ly hold d ded rather than fetched version » there Is some overiap
. + e.g. what’s the diff bety /! statlc and
creates 0 cycle branch delay p?m itie VLIW?
= problem - you bet - A: almost nothing
» BTB Is a cache so how does It get populated » take home
 likely want only active branches * If minimum energy Is your key concern
- e.g.In a loop - let the complier do what It can
+ unlikely to significantly over provision fetch - the HW just follows the orders
» 2 cholces « if performance counts
- then HW mechanisms will be required
* run ahead - fetch & cache taken path when you can
— If Instructions not cached then take the hit wi/ pipeline bubble - depending on how far you go
- since complier didn’t try to flll the delay siot - '::.:"“""' £o uze a lot more energy for littie performance
« or cache taken Instructions when they appear « what you should care about
- more likely scenario - &5 product
- this will always happen for unconditional branches ~ It's one good way to decide on design quality
- uncondix branches are stupld but an artifact of linear code stream - add In frequency and you get power
* Similar benefit for trace cache
School of Computing School of Computing 28 CS6810

CS6810

27

V)

University of Utah

V)

University of Utah

Page 7

