
Page 1

1 CS6810
School of Computing
University of Utah

Dynamic Issue & HW Speculation

 Today’s topics:

Superscalar pipelines

Dynamic Issue

 Scoreboarding: control centric approach

 Tomasulo: data centric approach

2 CS6810
School of Computing
University of Utah

Raising the IPC Ceiling

•  w/ single-issue IPCmax = 1
  schedule as hard as you want and it’s still the asymptote

»  keeping things in order  lots of stalls
•  XU’s finish out of order anyway

»  when the transistor budget is high enough
•  just go with multiple issue

–  >= 4 issue common today ::= superscalar machines

•  Superscalar issues: issuewidth = n
  need n way capability in all pipeline stages

»  fetch n – no worries fetch cache line of instructions/cycle

»  decode n
•  get register values – problems?

»  execute n
•  problems?

»  mem n
•  problems? w/out of order completion?

»  WB n
•  problems w/ out of order completion?

Page 2

3 CS6810
School of Computing
University of Utah

Fix OOO Completion Problem First

•  Enter the ROB (re-order buffer)
  basic idea for now

»  issue instructions in-order

»  retire/commit instructions in order

»  use an intermediate buffer to hold results
•  since destructive action to register file or memory must happen in

 order

•  Other ROB niceties
  helps w/

»  speculation

»  nullification

»  exceptions

  but first a simple example

4 CS6810
School of Computing
University of Utah

Reorder Buffer In Action

See any problems?

Page 3

5 CS6810
School of Computing
University of Utah

Several Issues

•  WB stage is now the commit stage
  ROB values move to the register file

»  whoops if tags are in the issue queue
•  those values need to be renamed to the register name

•  seems complex – can you thing of a better way?

6 CS6810
School of Computing
University of Utah

Several Issues

•  WB stage is now the commit stage
  ROB values move to the register file

»  whoops if tags are in the issue queue
•  those values need to be renamed to the register name

•  seems complex – can you think of a better way?

  IQ contains both register and tag fields
»  w/ 1 bit to select which is valid

•  initially tag is selected

•  when tag is retired
–  broadcast to IQ and invert selector on a match

•  what about tag values in the pipe
–  only need to worry about entry into EX stage

–  compares needed there as well

–  ROB is WB stage so that’s not a problem

–  MEM isn’t a problem either WHY?

•  Key observation
  all destructive operations are done by the ROB commit

/retire

Page 4

7 CS6810
School of Computing
University of Utah

Nullification & Exceptions

•  If an exception happens
  exception type is written to the ROB field

»  note that one instruction could generate an exception in
 multiple stages

•  only care about the first one so no overwrite is allowed

•  If some instruction is speculative
  then predicate is written to the ROB field

  note: predicate covers branch delay slots and effectively
 supports nullification

•  WB stage in reality
  try to retire n instructions per cycle

»  if none have pending predicates or exceptions then retire

»  in order retire  1st member of n-instruction bundle w/ problem
•  retire the instructions before

•  nullify whatever is next in the bundle

•  take the exception and hold the rest

8 CS6810
School of Computing
University of Utah

Decode Complexity

•  ROB complicates ID significantly
  operand fetch now has two sources

»  register file or ROB field
•  hence an additional mux is required

  rename takes some time
»  structural issue requirements will help mitigate the

 performance penalty

•  Bottom line
  ID will no longer be a single cycle stage

•  For register poor ISA’s like x86
  ROB slots effectively provides a renamed register pool

»  actually it’s not the right choice
•  Why?

•  remember the front-end back-end x86 thing

Page 5

9 CS6810
School of Computing
University of Utah

ROB Hazard Removal

•  RAW
  nothing changes here

»  no way you can use a value before it’s computed

»  unless the value is predicted and predicated
•  only some academic papers think this is a reasonable idea

»  hence instruction scheduling is required

•  Wax
  ROB renaming effectively removes this problem

»  as long as enough ROB slots exist

»  if not
•  then the instruction can’t be issued and a NOP is injected in the

 pipe

•  Note
  stalling pipelines @ GHz frequencies is a problem

»  hence NOPs are dynamically generated and pushed through
 the pipe

»  any issues here?

10 CS6810
School of Computing
University of Utah

EX Stages XU’s

•  Typical separation of XU’s
  ALU (int +/-, shift, logical (AND, OR, XOR, NOT)

  int-multiply
  int-divide

  FP ops can be 32 or 64-bit (typically implement 64-bit)
»  FP-add-sub

»  FP-multiply

»  FP-divide or FP-invert (1/x)

»  FP-sqrt or FP-isqrt?

•  Overlaps
  Branch and Mem ops can be handled with an ALU

  int mul or div can be handled by the FP equivalent
»  a common choice is to have a int-mul but not an int-div

•  why?

  actual choice influences structural issue rules

Page 6

11 CS6810
School of Computing
University of Utah

Structural Issue Rules

•  Clearly vary by machine

•  Example for a 6 issue machine
  2 ALU

  1 Branch

  1 Int Mul or Divide

  1 FP Add or Sub

  1 Mem

•  Why does this make sense?
  e.g. justification

12 CS6810
School of Computing
University of Utah

Structural Issue Rules

•  Clearly vary by machine

•  Example for a 6 issue machine
  2 ALU or 1 ALU and 1 Int-Mul

  1 Branch

  1 FP Mul or Divide

  1 FP Add or Sub

  1 Mem

•  Why does this make sense?
  Look at instruction frequency and common effort

»  Branch average about every 6 instructions so need that

»  LD + ST about every 6 as well

»  seldom need FP Mul & Divide on same cycle

»  FP Add/Sub share exponent normalization

»  Int-Divide is done on the FP-Div unit

Page 7

13 CS6810
School of Computing
University of Utah

Dynamic Issue

•  Until Now
  instructions have been issued in order

»  compiler thinks the world is sequential

»  HW must fulfill that contract

  e.g. Issue Queue

•  Dynamic Issue
  basics

»  use instruction window/buffer rather than a Q

»  choose the <= n instructions to issue
•  such that dependencies are satisfied

•  and structural rules are not violated

  2 methods
»  control centric: Scoreboarding

»  data centric: Tomasulo (text focus)

14 CS6810
School of Computing
University of Utah

Dynamic Issue Context

•  Less viable in multi-core land
  single thread performance is not longer the Holy Grail

  power wall is the fundamental constraint
»  dynamic issue consumes a lot of power

»  all the OOO/ROB stuff consumes a lot of power

  thermal wall is also an issue
»  frequency derating is common

»  affects reliability & cost in a major way

  with billion transistor chips
»  if they’re all active then the chip melts

»  interesting stat in a recent talk
•  C0 state is in play a very small percentage of the time

•  Hence
  I previously spent a lot of time on this issue

»  this term we’ll look at the conceptual side
•  and skip the minutiae

Page 8

15 CS6810
School of Computing
University of Utah

Trends

16 CS6810
School of Computing
University of Utah

Core Comparison

•  source: presentation by John Shalf @ NERSC

Page 9

17 CS6810
School of Computing
University of Utah

Another Viewpoint

•  source: John Shalf

Note: these numbers are a bit optimistic but the trend is correct

18 CS6810
School of Computing
University of Utah

Scoreboarding

•  Introduced by Seymour Cray in the CDC 6600 circa 1964
  4 FPUs, 5 MMUs, 7 Ius

  centralized control knows all
  RISC like instruction set

»  60% performance gain from dynamic reordering

»  inflated cost by 60% - good thing at $1.2M

»  not a chip
•  so chip heat and cooling was for the room not the chip

•  Later MIPS, IBM, & HP bring it back in single chip guise
  later changed to more decentralized approach due to long

 wire phenomenon

  Alpha was the last to convert to dynamic issue but was
 short lived

»  DEC dies and Intel buys the part that is Alpha
•  and then squashes it

Page 10

19 CS6810
School of Computing
University of Utah

Scoreboard Idea

•  Simple in concept, hairy in practice

20 CS6810
School of Computing
University of Utah

Multi-XU Scoreboard

Scoreboard contains ROB

Page 11

21 CS6810
School of Computing
University of Utah

Not Shown

•  Memory ops
  scoreboard views memory interface as just another XU

•  Branches
  scoreboard tracks branch resolution

»  nullifies any speculative instructions in the branch delay slots

•  Details of what the scoreboard entries contain
  similar to the ROB

  difference is centralized control
»  gets signals from everywhere and sends enables/selects back

»  round trip over long wires is prohibitive today for single core
•  note it would work for small cores

•  but it consumes too much power

»  jury still out whether this is a dead tactic or not

22 CS6810
School of Computing
University of Utah

Data Centric Dynamic Issue

•  Started with the IBM 360/91 circa 1969
  Tomasulo original idea applied only to the floating point

 units
»  note:

•  no caches, few registers, no precise exceptions

»  long and variable cycle latencies
•  note w/o caches operands came from registers or main memory

–  memory was based on ferrite cores

–  dinosaurs were a problem in the parking lot

•  results in out of order completion

»  note these characteristics now apply to other pieces of the
 machine

•  memory hierarchy creates unknown latency returns

•  floating point ops still have variable latencies

•  Same basic idea but dataflow based
  dynamic issue and hazard control is still the goal

Page 12

23 CS6810
School of Computing
University of Utah

Different Control Model

•  Multiple XU’s
  fronted by “reservation stations”
  when reservation station gets all of it’s operands the

 instruction issues into the associated XU
»  out of order issue & out of order completion

»  basically a mechanism for implementing data-flow
•  which is the true semantic contract

  XU’s create results which are tagged with the appropriate
 reservation station slot ID

»  equivalent of forwarding logic
•  implicitly removes RAW hazards

»  values placed on a “common data bus”
»  reservation station slots are registers

•  implicit renaming

•  removes WAx hazard problem

•  Separate load and store Q’s
  deals with the memory dismbiguation issue

»  provides a write buffer (we’ll see more of this later)

24 CS6810
School of Computing
University of Utah

New Pipeline Model

•  Fetch
  in order into instruction queue

•  Dispatch
  in-order into an available reservation station

•  Issue
  happens when a res. station slot gets all of it’s operands

»  instruction packet goes into Execute

•  Mem & WB are concurrent
  makes sense since only LD & ST use the MEM stage

 anyway

  WB goes to waiting reservation stations, registers, or
 memory

•  Key point
  in-order fetch and dispatch

  out of order completion and issue

Page 13

25 CS6810
School of Computing
University of Utah

360/91 Tomasulo

26 CS6810
School of Computing
University of Utah

Tomasulo MIPS

Page 14

27 CS6810
School of Computing
University of Utah

Tomasulo Comments

•  CDB is the weak link
  needs to be wide enough to hold multiple XU results

  same laminarity issue with a width wrinkle
»  if you need to execute n instructions/cycle on average

•  fetch, dispatch, issue, CDB needs to support n as well

•  Locality
  layout has surprisingly local wires

»  no long wire round-trip as per scoreboard approach

  exception
»  CDB goes EVERYWHERE

•  power hog and a frequency barrier
–  high-C multi-drop bus has signal integrity and delay issues

–  fixed with repeaters but adds delay and power

28 CS6810
School of Computing
University of Utah

Tomasulo Memory Issues

•  Out of order loads and stores possible
  OK if addresses don’t match

•  Dynamic memory disambiguation
  stall loads if a pending store to the same address

  OR garner the value from the store unit

  stall stores when there is a pending load from a previous
 instruction

•  But what about speculation & exceptions
  note exceptions weren’t precise in 1969

»  as far as I can tell nothing was

»  famous Wavy Gravy comment
•  “if you can remember the 60’s you weren’t there”

  Add the ROB?
»  it worked before and it will again

Page 15

29 CS6810
School of Computing
University of Utah

Tomasulo + ROB

30 CS6810
School of Computing
University of Utah

Final Comments

•  This stuff is important conceptually
  advise to go through the exercises in the text

»  the mid-term will definitely have something similar

  BUT
»  don’t get too whacked on their particular algorithm

•  others exist

  some aspect of these ideas are likely useful in the future
»  for now instructions in a thread are sequential

•  HW dynamics can help exploit ILP

  key issue
»  socket/chip these days has multiple cores

»  maximizing performance/watt is a critical concern
•  speculation and HW dynamics can be too “watty”

–  but there’s no need to go crazy at least right now

–  and in the foreseeable future

