Dynamic Issue & HW Speculation

Today’s topics:
Superscalar pipelines
Dynamic Issue
Scoreboarding: control centric approach

Tomasulo: data centric approach
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Raising the IPC Ceiling

* w/ single-issue IPC, ., =1
* schedule as hard as you want and it’s still the asymptote
» keeping things in order - lots of stalls
* XU’s finish out of order anyway
» when the transistor budget is high enough
¢ just go with multiple issue
- >= 4 issue common today ::= I hil

P

* Superscalar issues: issue, 4, = N
* need n way capability in all pipeline stages
» fetch n - no worries fetch cache line of instructions/cycle
» decode n
* get register values - problems?
» execute n
¢ problems?
» memn
* problems? w/out of order completion?
» WBn
* problems w/ out of order completion?
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Fix OO0 Completion Problem First

¢ Enter the ROB (re-order buffer)
= basic idea for now
» issue instructions in-order
» retire/commit instructions in order

» use an intermediate buffer to hold results

* since destructive action to register file or memory must happen in
order

¢ Other ROB niceties
= helps w/
» speculation
» nullification
» exceptions
= but first a simple example

ly, School of Computing 3 CS6810

University of Utah

Reorder Buffer In Action

Reorder Buffer (ROB)

—’-l--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

See any problems?
Issue Queue (1Q)
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Several Issues

* WB stage is now the commit stage

= ROB values move to the register file

» whoops if tags are in the issue queue
¢ those values need to be renamed to the register name
* seems complex - can you thing of a better way?
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Several Issues

* WB stage is now the commit stage
* ROB values move to the register file

» whoops if tags are in the issue queue
* those values need to be renamed to the register name
* seems complex — can you think of a better way?
= 1Q contains both register and tag fields
» w/ 1 bit to select which is valid
« initially tag is selected
* when tag is retired
- broadcast to 1Q and Invert selector on a match
* what about tag values in the pipe
- only need to worry about entry Into EX stage
- compares needed there as well
- ROB Is WB stage so that’s not a problem
- MEM isn’t a problem either WHY?

* Key observation

= all destructive operations are done by the ROB commit
Iretire
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Nullification & Exceptions

¢ If an exception happens
= exception type is written to the ROB field

» note that one instruction could generate an exception in
multiple stages
* only care about the first one so no overwrite is allowed

¢ If some instruction is speculative
= then predicate is written to the ROB field
* note: predicate covers branch delay slots and effectively
supports nullification
* WB stage in reality
= try to retire n instructions per cycle
» if none have pending predicates or exceptions then retire
» in order retire - 1t member of n-instruction bundie w/ problem
 retire the instructions before

* nullify whatever Is next In the bundle
o take the exception and hold the rest
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Decode Complexity

¢ ROB complicates ID significantly

= operand fetch now has two sources

» register file or ROB field
* hence an additional mux Is required

* rename takes some time

» structural issue requirements will help mitigate the
performance penalty

e Bottom line
= ID will no longer be a single cycle stage
* For register poor ISA’s like x86

* ROB slots effectively provides a renamed register pool

» actually it’s not the right choice
* Why?
* remember the front-end back-end x86 thing
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ROB Hazard Removal

* RAW
= nothing changes here
» no way you can use a value before it’s computed

» unless the value is predicted and predicated
* only some academic papers think this is a reasonable idea

» hence instruction scheduling is required
* Wax
= ROB renaming effectively removes this problem
» as long as enough ROB slots exist

» if not
¢ then the instruction can’t be issued and a NOP is injected in the
pipe
* Note

= stalling pipelines @ GHz frequencies is a problem

» hence NOPs are dynamically generated and pushed through
the pipe
» any issues here?
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EX Stages XU’s

* Typical separation of XU’s
= ALU (int +/-, shift, logical (AND, OR, XOR, NOT)
= int-multiply
* int-divide
= FP ops can be 32 or 64-bit (typically implement 64-bit)
» FP-add-sub
» FP-multiply
» FP-divide or FP-invert (1/x)
» FP-sqrt or FP-isqrt?
e Overlaps
= Branch and Mem ops can be handled with an ALU
= int mul or div can be handiled by the FP equivalent
» a common choice is to have a int-mul but not an int-div
* why?
* actual choice influences structural issue rules
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Structural Issue Rules

e Clearly vary by machine
 Example for a 6 issue machine
= 2ALU
= 1 Branch
* 1 Int Mul or Divide
= 1 FP Add or Sub
= 1 Mem
* Why does this make sense?
= e.g. justification
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Structural Issue Rules

¢ Clearly vary by machine
e Example for a 6 issue machine
= 2 ALU or 1 ALU and 1 Int-Mul
= 1 Branch
= 1 FP Mul or Divide
= 1 FP Add or Sub
= 1 Mem

* Why does this make sense?

* Look at instruction frequency and common effort
» Branch average about every 6 instructions so need that
» LD + ST about every 6 as well
» seldom need FP Mul & Divide on same cycle
» FP Add/Sub share exponent normalization
» Int-Divide is done on the FP-Div unit
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Dynamic Issue

¢ Until Now
= instructions have been issued in order
» compiler thinks the world is sequential
» HW must fulfill that contract
* e.g. Issue Queue

* Dynamic Issue
* basics
» use instruction window/buffer rather than a Q
» choose the <= n instructions to issue

* such that dependencies are satisfied
¢ and structural rules are not violated

= 2 methods
» control centric: Scoreboarding
» data centric: Tomasulo (text focus)
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Dynamic Issue Context

¢ Less viable in multi-core land
* single thread performance is not longer the Holy Grail
= power wall is the fundamental constraint
» dynamic issue consumes a lot of power
» all the OOO/ROB stuff consumes a lot of power
= thermal wall is also an issue
» frequency derating is common
» affects reliability & cost in a major way
= with billion transistor chips
» if they’re all active then the chip melts
» interesting stat in a recent talk
* CO state is in play a very small percentage of the time
* Hence
= [ previously spent a lot of time on this issue

» this term we’ll look at the conceptual side
* and skip the minutiae
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Trends
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Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith
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Core Comparison

e source: presentation by John Shalf @ NERSC

» Power>5 (Server)
— 389mmA2
- 120W@1900MHz
» Intel Core2 sc (laptop)
— 130mmA2
- 15W@1000MHz
« ARM Cortex A8 (automobiles)
— 5mmA*2
— 0.8W@800MHz
* Tensilica DP (cell phones / printers)
— 0.8mmA2
— 0.09W@600MHz
* Tensilica Xtensa (Cisco router)
— 0.32mmA2 for 3!
— 0.05W@600MHz

P== office of Each core operates at 1/3 to 1/10th efficiency of largest chip, but you
~—d Science can pack 100x more cores onto a chip and consume 1/20 the power
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Another Viewpoint

¢ source: John Shalf

Traditional Core | Throughput Core
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Note: these numbers are a bit optimistic but the trend is correct
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Scoreboarding

¢ Introduced by Seymour Cray in the CDC 6600 circa 1964
= 4 FPUs, 5 MMUs, 7 lus
= centralized control knows all
= RISC like instruction set
» 60% performance gain from dynamic reordering
» inflated cost by 60% - good thing at $1.2M
» not a chip
* so chip heat and cooling was for the room not the chip
* Later MIPS, IBM, & HP bring it back in single chip guise

* later changed to more decentralized approach due to long
wire phenomenon

= Alpha was the last to convert to dynamic issue but was
short lived

» DEC dies and Intel buys the part that is Alpha
+ and then squashes it
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Scoreboard Idea

o Simple in concept, hairy in practice

Instructions

IF 1
Scoreboard

ID '
=l h f

Window

Note: normal ID I | Y
stage now split in 2:
1. decode » EX o o o WB
2. issue

CPU Pipeline
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Multi-XU Scoreboard

Registers
FP Mult j
FP Mul .
- Note: this model could
° < & J support both single or
FP Divide multi-issue
L - ; Exception is that one
> J multiply will be issued
»| FP Add per cycle
L4 | )
™[integer Uni All depends on bus/trunk
> structure

‘ Scoreboard contains ROB
l SCOREBOARD[*
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Not Shown

e Memory ops
* scoreboard views memory interface as just another XU
* Branches
= scoreboard tracks branch resolution
» nullifies any speculative instructions in the branch delay slots
* Details of what the scoreboard entries contain
= similar to the ROB
= difference is centralized control
» gets signals from everywhere and sends enables/selects back
» round trip over long wires is prohibitive today for single core
¢ note it would work for small cores
* but it consumes too much power
» jury still out whether this is a dead tactic or not
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Data Centric Dynamic Issue

o Started with the IBM 360/91 circa 1969

= Tomasulo original idea applied only to the floating point
units
» note:
* no caches, few registers, no precise exceptions
» long and variable cycle latencies

* note w/o caches operands came from registers or main memory
- memory was based on ferrite cores

- di s were a probl in the parking lot
 results in out of order completion
» note these characteristics now apply to other pieces of the
machine
* memory hierarchy creates unknown latency returns

» floating point ops still have variable latencies
¢ Same basic idea but dataflow based
= dynamic issue and hazard control is still the goal
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Different Control Model

¢ Multiple XU’s
* fronted by “reservation stations”
= when reservation station gets all of it’s operands the
instruction issues into the associated XU
» out of order issue & out of order completion
» basically a mechanism for implementing data-flow
* which is the true semantic contract
= XU’s create results which are tagged with the appropriate
reservation station slot ID
» equivalent of forwarding logic
¢ implicitly removes RAW hazards
» values placed on a “common data bus”

» reservation station slots are registers
* Implicit renaming
* removes WAx hazard problem

+ Separate load and store Q’s

= deals with the memory dismbiguation issue
» provides a write buffer (we’ll see more of this later)
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New Pipeline Model

¢ Fetch
* in order into instruction queue
¢ Dispatch
* in-order into an available reservation station
e Issue
* happens when a res. station slot gets all of it’s operands
» instruction packet goes into Execute
¢ Mem & WB are concurrent

* makes sense since only LD & ST use the MEM stage
anyway

= WB goes to waiting reservation stations, registers, or
memory

¢ Key point
* in-order fetch and dispatch
= out of order completion and issue
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From Memory

360/91 Tomasulo

rom Instruction

F
*l,lml

6 8
5 Fp 4
Load 4 FP Op. FLOP's Registers 2
Buffers 3 Queue 0
2
1 1 DECODE
I i @ Store
Buffers
®
Y Y Y v oy 3
CTL SINK [SOURCE CTL | SINK [ SOURCE 2
Reservatign 1
Stations +
! ! |J1'1/§‘u\
Add/Subtract | wltuplyDivide
All sink and
source reglsters
are tagged
YCDB Common Data Busy
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From Memory

Tomasulo MIPS

6
5
Load 4
Buffers 3
2
B

Y

From Instruction
+l,l nit *
FP
FP Op. Registers
Queue
i & I Store
‘ I Buffers
v vy 3
2
Reservatign 1
Stations *

|

1

5

FP Adders

|~

. *®

JICDB Common Data Bus

1
L{ FP Multipliers |

~FU’'s = same concept

Note: piped or 1 issue
per cycle replicated

different accounting

)
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Tomasulo Comments

e CDB is the weak link
* needs to be wide enough to hold multiple XU results

= same laminarity issue with a width wrinkle
» if you need to execute n instructions/cycle on average
o fetch, dispatch, issue, CDB needs to support n as well

¢ Locality
= layout has surprisingly local wires
» no long wire round-trip as per scoreboard approach
= exception
» CDB goes EVERYWHERE
* power hog and a frequency barrier

— high-C multi-drop bus has signal integrity and delay issues
- fixed with repeaters but adds delay and power
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Tomasulo Memory Issues

¢ Out of order loads and stores possible
* OK if addresses don’t match
¢ Dynamic memory disambiguation
= stall loads if a pending store to the same address
* OR garner the value from the store unit
= stall stores when there is a pending load from a previous
instruction
¢ But what about speculation & exceptions
* note exceptions weren’t precise in 1969
» as far as | can tell nothing was

» famous Wavy Gravy comment
* “If you can remember the 60’s you weren’t there”

= Add the ROB?
» it worked before and it will again
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Tomasulo + ROB

Reorder buffer
From instruction unit

‘. Reg # Data
Instruction |
queue h
FP registers I
Load-store
‘—.‘ . Operand
Address unit Floating-point buses
operations
Load buffers
Operation bus
Siors e — b T2
address 2 Reservation 1
Store 1 stations
data Address

Memory unit FP adders i FP multipliers
Load
data Common data bus (CDB)

©2007 B i A i resaved.
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Final Comments

¢ This stuff is important conceptually

= advise to go through the exercises in the text
» the mid-term will definitely have something similar
= BUT
» don’t get too whacked on their particular algorithm
* others exist
= some aspect of these ideas are likely useful in the future
» for now instructions in a thread are sequential
« HW dynamics can help exploit ILP
= key issue
» socket/chip these days has multiple cores

» maximizing performance/watt is a critical concern

* speculation and HW dynamics can be too “wafty”
- but there’s no need to go crazy at least right now
- and in the foreseeable future
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