Dynamic Issue & HW Speculation

Today’s topics:
Superscalar pipelines
Dynamic Issue
Scoreboarding: control centric approach

Tomasulo: data centric approach

School of Computing
!yj University of Utah 1 CS6810

Raising the IPC Ceiling

* w/ single-issue IPC, ., =1
* schedule as hard as you want and it’s still the asymptote
» keeping things in order - lots of stalls
* XU’s finish out of order anyway
» when the transistor budget is high enough
¢ just go with multiple issue
- >= 4 issue common today ::= I hil

P

* Superscalar issues: issue, 4, = N
* need n way capability in all pipeline stages
» fetch n - no worries fetch cache line of instructions/cycle
» decode n
* get register values - problems?
» execute n
¢ problems?
» memn
* problems? w/out of order completion?
» WBn
* problems w/ out of order completion?

School of Computing
!DJ University of Utah 2 CS6810

Page 1

Fix OO0 Completion Problem First

¢ Enter the ROB (re-order buffer)
= basic idea for now
» issue instructions in-order
» retire/commit instructions in order

» use an intermediate buffer to hold results

* since destructive action to register file or memory must happen in
order

¢ Other ROB niceties
= helps w/
» speculation
» nullification
» exceptions
= but first a simple example

ly, School of Computing 3 CS6810

University of Utah

Reorder Buffer In Action

Reorder Buffer (ROB)

—’-l--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

See any problems?
Issue Queue (1Q)

!DJ School of Computing s CcS6810

University of Utah

Page 2

Several Issues

* WB stage is now the commit stage

= ROB values move to the register file

» whoops if tags are in the issue queue
¢ those values need to be renamed to the register name
* seems complex - can you thing of a better way?

School of Computing
!yj University of Utah S CS6810

Several Issues

* WB stage is now the commit stage
* ROB values move to the register file

» whoops if tags are in the issue queue
* those values need to be renamed to the register name
* seems complex — can you think of a better way?
= 1Q contains both register and tag fields
» w/ 1 bit to select which is valid
« initially tag is selected
* when tag is retired
- broadcast to 1Q and Invert selector on a match
* what about tag values in the pipe
- only need to worry about entry Into EX stage
- compares needed there as well
- ROB Is WB stage so that’s not a problem
- MEM isn’t a problem either WHY?

* Key observation

= all destructive operations are done by the ROB commit
Iretire

School of Computing
!”J University of Utah 6 CS6810

Page 3

Nullification & Exceptions

¢ If an exception happens
= exception type is written to the ROB field

» note that one instruction could generate an exception in
multiple stages
* only care about the first one so no overwrite is allowed

¢ If some instruction is speculative
= then predicate is written to the ROB field
* note: predicate covers branch delay slots and effectively
supports nullification
* WB stage in reality
= try to retire n instructions per cycle
» if none have pending predicates or exceptions then retire
» in order retire - 1t member of n-instruction bundie w/ problem
 retire the instructions before

* nullify whatever Is next In the bundle
o take the exception and hold the rest

!DJ School of Computing 4 CS6810

University of Utah

Decode Complexity

¢ ROB complicates ID significantly

= operand fetch now has two sources

» register file or ROB field
* hence an additional mux Is required

* rename takes some time

» structural issue requirements will help mitigate the
performance penalty

e Bottom line
= ID will no longer be a single cycle stage
* For register poor ISA’s like x86

* ROB slots effectively provides a renamed register pool

» actually it’s not the right choice
* Why?
* remember the front-end back-end x86 thing

!DJ School of Computing 8 CcS6810

University of Utah

Page 4

ROB Hazard Removal

* RAW
= nothing changes here
» no way you can use a value before it’s computed

» unless the value is predicted and predicated
* only some academic papers think this is a reasonable idea

» hence instruction scheduling is required
* Wax
= ROB renaming effectively removes this problem
» as long as enough ROB slots exist

» if not
¢ then the instruction can’t be issued and a NOP is injected in the
pipe
* Note

= stalling pipelines @ GHz frequencies is a problem

» hence NOPs are dynamically generated and pushed through
the pipe
» any issues here?

School of Computing
!yj University of Utah 9 CS6810

EX Stages XU’s

* Typical separation of XU’s
= ALU (int +/-, shift, logical (AND, OR, XOR, NOT)
= int-multiply
* int-divide
= FP ops can be 32 or 64-bit (typically implement 64-bit)
» FP-add-sub
» FP-multiply
» FP-divide or FP-invert (1/x)
» FP-sqrt or FP-isqrt?
e Overlaps
= Branch and Mem ops can be handled with an ALU
= int mul or div can be handiled by the FP equivalent
» a common choice is to have a int-mul but not an int-div
* why?
* actual choice influences structural issue rules

School of Computing
!w University of Utah 10 CS6810

Page 5

Structural Issue Rules

e Clearly vary by machine
 Example for a 6 issue machine
= 2ALU
= 1 Branch
* 1 Int Mul or Divide
= 1 FP Add or Sub
= 1 Mem
* Why does this make sense?
= e.g. justification

School of Computing
!yj University of Utah " CS6810

Structural Issue Rules

¢ Clearly vary by machine
e Example for a 6 issue machine
= 2 ALU or 1 ALU and 1 Int-Mul
= 1 Branch
= 1 FP Mul or Divide
= 1 FP Add or Sub
= 1 Mem

* Why does this make sense?

* Look at instruction frequency and common effort
» Branch average about every 6 instructions so need that
» LD + ST about every 6 as well
» seldom need FP Mul & Divide on same cycle
» FP Add/Sub share exponent normalization
» Int-Divide is done on the FP-Div unit

School of Computing
!DJ University of Utah 12 CS6810

Page 6

Dynamic Issue

¢ Until Now
= instructions have been issued in order
» compiler thinks the world is sequential
» HW must fulfill that contract
* e.g. Issue Queue

* Dynamic Issue
* basics
» use instruction window/buffer rather than a Q
» choose the <= n instructions to issue

* such that dependencies are satisfied
¢ and structural rules are not violated

= 2 methods
» control centric: Scoreboarding
» data centric: Tomasulo (text focus)

School of Computing
!”J University of Utah 13 CS6810

Dynamic Issue Context

¢ Less viable in multi-core land
* single thread performance is not longer the Holy Grail
= power wall is the fundamental constraint
» dynamic issue consumes a lot of power
» all the OOO/ROB stuff consumes a lot of power
= thermal wall is also an issue
» frequency derating is common
» affects reliability & cost in a major way
= with billion transistor chips
» if they’re all active then the chip melts
» interesting stat in a recent talk
* CO state is in play a very small percentage of the time
* Hence
= [previously spent a lot of time on this issue

» this term we’ll look at the conceptual side
* and skip the minutiae

School of Computing
lDJ University of Utah 14 CS6810

Page 7

Trends

10,000,000

1,000,000 - 2

100,000

10,000

1,000

N
o

\e

-
»|

| + Clock Spesd (MHz)
ese aPower (W)
@ Perficlock (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

School of Computing
lDJ University of Utah 15 CS6810

Core Comparison

e source: presentation by John Shalf @ NERSC

» Power>5 (Server)
— 389mmA2
- 120W@1900MHz
» Intel Core2 sc (laptop)
— 130mmA2
- 15W@1000MHz
« ARM Cortex A8 (automobiles)
— 5mmA*2
— 0.8W@800MHz
* Tensilica DP (cell phones / printers)
— 0.8mmA2
— 0.09W@600MHz
* Tensilica Xtensa (Cisco router)
— 0.32mmA2 for 3!
— 0.05W@600MHz

P== office of Each core operates at 1/3 to 1/10th efficiency of largest chip, but you
~—d Science can pack 100x more cores onto a chip and consume 1/20 the power

School of Computing
!”J University of Utah 16 CS6810

Page 8

Another Viewpoint

¢ source: John Shalf

Traditional Core | Throughput Core

Out of Order In Order

50 10

375 6.25

4 4

4

1 03

| 4(128-bit) 16 (512-bit) |

128

GFLOPS/mm

GFLOPSW

Note: these numbers are a bit optimistic but the trend is correct

School of Computing
wj University of Utah 17 CS6810

Scoreboarding

¢ Introduced by Seymour Cray in the CDC 6600 circa 1964
= 4 FPUs, 5 MMUs, 7 lus
= centralized control knows all
= RISC like instruction set
» 60% performance gain from dynamic reordering
» inflated cost by 60% - good thing at $1.2M
» not a chip
* so chip heat and cooling was for the room not the chip
* Later MIPS, IBM, & HP bring it back in single chip guise

* later changed to more decentralized approach due to long
wire phenomenon

= Alpha was the last to convert to dynamic issue but was
short lived

» DEC dies and Intel buys the part that is Alpha
+ and then squashes it

School of Computing
!”J University of Utah 18 CS6810

Page 9

Scoreboard Idea

o Simple in concept, hairy in practice

Instructions

IF 1
Scoreboard

ID '
=l h f

Window

Note: normal ID I | Y
stage now split in 2:
1. decode » EX o o o WB
2. issue

CPU Pipeline

School of Computing
!yj University of Utah 19 CS6810

Multi-XU Scoreboard

Registers
FP Mult j
FP Mul .
- Note: this model could
° < & J support both single or
FP Divide multi-issue
L - ; Exception is that one
> J multiply will be issued
»| FP Add per cycle
L4 |)
™[integer Uni All depends on bus/trunk
> structure

‘ Scoreboard contains ROB
l SCOREBOARD[*

School of Computing
!w University of Utah 20 CS6810

Page 10

Not Shown

e Memory ops
* scoreboard views memory interface as just another XU
* Branches
= scoreboard tracks branch resolution
» nullifies any speculative instructions in the branch delay slots
* Details of what the scoreboard entries contain
= similar to the ROB
= difference is centralized control
» gets signals from everywhere and sends enables/selects back
» round trip over long wires is prohibitive today for single core
¢ note it would work for small cores
* but it consumes too much power
» jury still out whether this is a dead tactic or not

School of Computing
!DJ University of Utah 2 CS6810

Data Centric Dynamic Issue

o Started with the IBM 360/91 circa 1969

= Tomasulo original idea applied only to the floating point
units
» note:
* no caches, few registers, no precise exceptions
» long and variable cycle latencies

* note w/o caches operands came from registers or main memory
- memory was based on ferrite cores

- di s were a probl in the parking lot
 results in out of order completion
» note these characteristics now apply to other pieces of the
machine
* memory hierarchy creates unknown latency returns

» floating point ops still have variable latencies
¢ Same basic idea but dataflow based
= dynamic issue and hazard control is still the goal

School of Computing
!”J University of Utah 22 CS6810

Page 11

Different Control Model

¢ Multiple XU’s
* fronted by “reservation stations”
= when reservation station gets all of it’s operands the
instruction issues into the associated XU
» out of order issue & out of order completion
» basically a mechanism for implementing data-flow
* which is the true semantic contract
= XU’s create results which are tagged with the appropriate
reservation station slot ID
» equivalent of forwarding logic
¢ implicitly removes RAW hazards
» values placed on a “common data bus”

» reservation station slots are registers
* Implicit renaming
* removes WAx hazard problem

+ Separate load and store Q’s

= deals with the memory dismbiguation issue
» provides a write buffer (we’ll see more of this later)

School of Computing
!yj University of Utah 23 CS6810

New Pipeline Model

¢ Fetch
* in order into instruction queue
¢ Dispatch
* in-order into an available reservation station
e Issue
* happens when a res. station slot gets all of it’s operands
» instruction packet goes into Execute
¢ Mem & WB are concurrent

* makes sense since only LD & ST use the MEM stage
anyway

= WB goes to waiting reservation stations, registers, or
memory

¢ Key point
* in-order fetch and dispatch
= out of order completion and issue

!”J School of Computing

University of Utah 24 CS6810

Page 12

From Memory

360/91 Tomasulo

rom Instruction

F
*l,lml

6 8
5 Fp 4
Load 4 FP Op. FLOP's Registers 2
Buffers 3 Queue 0
2
1 1 DECODE
I i @ Store
Buffers
®
Y Y Y v oy 3
CTL SINK [SOURCE CTL | SINK [SOURCE 2
Reservatign 1
Stations +
! ! |J1'1/§‘u\
Add/Subtract | wltuplyDivide
All sink and
source reglsters
are tagged
YCDB Common Data Busy
wj School of Computing 25 CS6810

University of Utah

From Memory

Tomasulo MIPS

6
5
Load 4
Buffers 3
2
B

Y

From Instruction
+l,l nit *
FP
FP Op. Registers
Queue
i & I Store
‘ I Buffers
v vy 3
2
Reservatign 1
Stations *

|

1

5

FP Adders

|~

. *®

JICDB Common Data Bus

1
L{ FP Multipliers |

~FU’'s = same concept

Note: piped or 1 issue
per cycle replicated

different accounting

)

School of Computing
University of Utah

26

CS6810

Page 13

Tomasulo Comments

e CDB is the weak link
* needs to be wide enough to hold multiple XU results

= same laminarity issue with a width wrinkle
» if you need to execute n instructions/cycle on average
o fetch, dispatch, issue, CDB needs to support n as well

¢ Locality
= layout has surprisingly local wires
» no long wire round-trip as per scoreboard approach
= exception
» CDB goes EVERYWHERE
* power hog and a frequency barrier

— high-C multi-drop bus has signal integrity and delay issues
- fixed with repeaters but adds delay and power

School of Computing
!yj University of Utah 27 CS6810

Tomasulo Memory Issues

¢ Out of order loads and stores possible
* OK if addresses don’t match
¢ Dynamic memory disambiguation
= stall loads if a pending store to the same address
* OR garner the value from the store unit
= stall stores when there is a pending load from a previous
instruction
¢ But what about speculation & exceptions
* note exceptions weren’t precise in 1969
» as far as | can tell nothing was

» famous Wavy Gravy comment
* “If you can remember the 60’s you weren’t there”

= Add the ROB?
» it worked before and it will again

School of Computing
!w University of Utah 28 CS6810

Page 14

Tomasulo + ROB

Reorder buffer
From instruction unit

‘. Reg # Data
Instruction |
queue h
FP registers I
Load-store
‘—.‘ . Operand
Address unit Floating-point buses
operations
Load buffers
Operation bus
Siors e — b T2
address 2 Reservation 1
Store 1 stations
data Address

Memory unit FP adders i FP multipliers
Load
data Common data bus (CDB)

©2007 B i A i resaved.

IDJ School of Computing

University of Utah 29 CS6810

Final Comments

¢ This stuff is important conceptually

= advise to go through the exercises in the text
» the mid-term will definitely have something similar
= BUT
» don’t get too whacked on their particular algorithm
* others exist
= some aspect of these ideas are likely useful in the future
» for now instructions in a thread are sequential
« HW dynamics can help exploit ILP
= key issue
» socket/chip these days has multiple cores

» maximizing performance/watt is a critical concern

* speculation and HW dynamics can be too “wafty”
- but there’s no need to go crazy at least right now
- and in the foreseeable future

!DJ School of Computing

University of Utah 30 CS6810

Page 15

