
Page 1

1 CS6810
School of Computing
University of Utah

Dynamic Issue & HW Speculation

 Today’s topics:

Superscalar pipelines

Dynamic Issue

 Scoreboarding: control centric approach

 Tomasulo: data centric approach

2 CS6810
School of Computing
University of Utah

Raising the IPC Ceiling

•  w/ single-issue IPCmax = 1
  schedule as hard as you want and it’s still the asymptote

»  keeping things in order lots of stalls
•  XU’s finish out of order anyway

»  when the transistor budget is high enough
•  just go with multiple issue

–  >= 4 issue common today ::= superscalar machines

•  Superscalar issues: issuewidth = n
  need n way capability in all pipeline stages

»  fetch n – no worries fetch cache line of instructions/cycle

»  decode n
•  get register values – problems?

»  execute n
•  problems?

»  mem n
•  problems? w/out of order completion?

»  WB n
•  problems w/ out of order completion?

Page 2

3 CS6810
School of Computing
University of Utah

Fix OOO Completion Problem First

•  Enter the ROB (re-order buffer)
  basic idea for now

»  issue instructions in-order

»  retire/commit instructions in order

»  use an intermediate buffer to hold results
•  since destructive action to register file or memory must happen in

 order

•  Other ROB niceties
  helps w/

»  speculation

»  nullification

»  exceptions

  but first a simple example

4 CS6810
School of Computing
University of Utah

Reorder Buffer In Action

See any problems?

Page 3

5 CS6810
School of Computing
University of Utah

Several Issues

•  WB stage is now the commit stage
  ROB values move to the register file

»  whoops if tags are in the issue queue
•  those values need to be renamed to the register name

•  seems complex – can you thing of a better way?

6 CS6810
School of Computing
University of Utah

Several Issues

•  WB stage is now the commit stage
  ROB values move to the register file

»  whoops if tags are in the issue queue
•  those values need to be renamed to the register name

•  seems complex – can you think of a better way?

  IQ contains both register and tag fields
»  w/ 1 bit to select which is valid

•  initially tag is selected

•  when tag is retired
–  broadcast to IQ and invert selector on a match

•  what about tag values in the pipe
–  only need to worry about entry into EX stage

–  compares needed there as well

–  ROB is WB stage so that’s not a problem

–  MEM isn’t a problem either WHY?

•  Key observation
  all destructive operations are done by the ROB commit

/retire

Page 4

7 CS6810
School of Computing
University of Utah

Nullification & Exceptions

•  If an exception happens
  exception type is written to the ROB field

»  note that one instruction could generate an exception in
 multiple stages

•  only care about the first one so no overwrite is allowed

•  If some instruction is speculative
  then predicate is written to the ROB field

  note: predicate covers branch delay slots and effectively
 supports nullification

•  WB stage in reality
  try to retire n instructions per cycle

»  if none have pending predicates or exceptions then retire

»  in order retire 1st member of n-instruction bundle w/ problem
•  retire the instructions before

•  nullify whatever is next in the bundle

•  take the exception and hold the rest

8 CS6810
School of Computing
University of Utah

Decode Complexity

•  ROB complicates ID significantly
  operand fetch now has two sources

»  register file or ROB field
•  hence an additional mux is required

  rename takes some time
»  structural issue requirements will help mitigate the

 performance penalty

•  Bottom line
  ID will no longer be a single cycle stage

•  For register poor ISA’s like x86
  ROB slots effectively provides a renamed register pool

»  actually it’s not the right choice
•  Why?

•  remember the front-end back-end x86 thing

Page 5

9 CS6810
School of Computing
University of Utah

ROB Hazard Removal

•  RAW
  nothing changes here

»  no way you can use a value before it’s computed

»  unless the value is predicted and predicated
•  only some academic papers think this is a reasonable idea

»  hence instruction scheduling is required

•  Wax
  ROB renaming effectively removes this problem

»  as long as enough ROB slots exist

»  if not
•  then the instruction can’t be issued and a NOP is injected in the

 pipe

•  Note
  stalling pipelines @ GHz frequencies is a problem

»  hence NOPs are dynamically generated and pushed through
 the pipe

»  any issues here?

10 CS6810
School of Computing
University of Utah

EX Stages XU’s

•  Typical separation of XU’s
  ALU (int +/-, shift, logical (AND, OR, XOR, NOT)

  int-multiply
  int-divide

  FP ops can be 32 or 64-bit (typically implement 64-bit)
»  FP-add-sub

»  FP-multiply

»  FP-divide or FP-invert (1/x)

»  FP-sqrt or FP-isqrt?

•  Overlaps
  Branch and Mem ops can be handled with an ALU

  int mul or div can be handled by the FP equivalent
»  a common choice is to have a int-mul but not an int-div

•  why?

  actual choice influences structural issue rules

Page 6

11 CS6810
School of Computing
University of Utah

Structural Issue Rules

•  Clearly vary by machine

•  Example for a 6 issue machine
  2 ALU

  1 Branch

  1 Int Mul or Divide

  1 FP Add or Sub

  1 Mem

•  Why does this make sense?
  e.g. justification

12 CS6810
School of Computing
University of Utah

Structural Issue Rules

•  Clearly vary by machine

•  Example for a 6 issue machine
  2 ALU or 1 ALU and 1 Int-Mul

  1 Branch

  1 FP Mul or Divide

  1 FP Add or Sub

  1 Mem

•  Why does this make sense?
  Look at instruction frequency and common effort

»  Branch average about every 6 instructions so need that

»  LD + ST about every 6 as well

»  seldom need FP Mul & Divide on same cycle

»  FP Add/Sub share exponent normalization

»  Int-Divide is done on the FP-Div unit

Page 7

13 CS6810
School of Computing
University of Utah

Dynamic Issue

•  Until Now
  instructions have been issued in order

»  compiler thinks the world is sequential

»  HW must fulfill that contract

  e.g. Issue Queue

•  Dynamic Issue
  basics

»  use instruction window/buffer rather than a Q

»  choose the <= n instructions to issue
•  such that dependencies are satisfied

•  and structural rules are not violated

  2 methods
»  control centric: Scoreboarding

»  data centric: Tomasulo (text focus)

14 CS6810
School of Computing
University of Utah

Dynamic Issue Context

•  Less viable in multi-core land
  single thread performance is not longer the Holy Grail

  power wall is the fundamental constraint
»  dynamic issue consumes a lot of power

»  all the OOO/ROB stuff consumes a lot of power

  thermal wall is also an issue
»  frequency derating is common

»  affects reliability & cost in a major way

  with billion transistor chips
»  if they’re all active then the chip melts

»  interesting stat in a recent talk
•  C0 state is in play a very small percentage of the time

•  Hence
  I previously spent a lot of time on this issue

»  this term we’ll look at the conceptual side
•  and skip the minutiae

Page 8

15 CS6810
School of Computing
University of Utah

Trends

16 CS6810
School of Computing
University of Utah

Core Comparison

•  source: presentation by John Shalf @ NERSC

Page 9

17 CS6810
School of Computing
University of Utah

Another Viewpoint

•  source: John Shalf

Note: these numbers are a bit optimistic but the trend is correct

18 CS6810
School of Computing
University of Utah

Scoreboarding

•  Introduced by Seymour Cray in the CDC 6600 circa 1964
  4 FPUs, 5 MMUs, 7 Ius

  centralized control knows all
  RISC like instruction set

»  60% performance gain from dynamic reordering

»  inflated cost by 60% - good thing at $1.2M

»  not a chip
•  so chip heat and cooling was for the room not the chip

•  Later MIPS, IBM, & HP bring it back in single chip guise
  later changed to more decentralized approach due to long

 wire phenomenon

  Alpha was the last to convert to dynamic issue but was
 short lived

»  DEC dies and Intel buys the part that is Alpha
•  and then squashes it

Page 10

19 CS6810
School of Computing
University of Utah

Scoreboard Idea

•  Simple in concept, hairy in practice

20 CS6810
School of Computing
University of Utah

Multi-XU Scoreboard

Scoreboard contains ROB

Page 11

21 CS6810
School of Computing
University of Utah

Not Shown

•  Memory ops
  scoreboard views memory interface as just another XU

•  Branches
  scoreboard tracks branch resolution

»  nullifies any speculative instructions in the branch delay slots

•  Details of what the scoreboard entries contain
  similar to the ROB

  difference is centralized control
»  gets signals from everywhere and sends enables/selects back

»  round trip over long wires is prohibitive today for single core
•  note it would work for small cores

•  but it consumes too much power

»  jury still out whether this is a dead tactic or not

22 CS6810
School of Computing
University of Utah

Data Centric Dynamic Issue

•  Started with the IBM 360/91 circa 1969
  Tomasulo original idea applied only to the floating point

 units
»  note:

•  no caches, few registers, no precise exceptions

»  long and variable cycle latencies
•  note w/o caches operands came from registers or main memory

–  memory was based on ferrite cores

–  dinosaurs were a problem in the parking lot

•  results in out of order completion

»  note these characteristics now apply to other pieces of the
 machine

•  memory hierarchy creates unknown latency returns

•  floating point ops still have variable latencies

•  Same basic idea but dataflow based
  dynamic issue and hazard control is still the goal

Page 12

23 CS6810
School of Computing
University of Utah

Different Control Model

•  Multiple XU’s
  fronted by “reservation stations”
  when reservation station gets all of it’s operands the

 instruction issues into the associated XU
»  out of order issue & out of order completion

»  basically a mechanism for implementing data-flow
•  which is the true semantic contract

  XU’s create results which are tagged with the appropriate
 reservation station slot ID

»  equivalent of forwarding logic
•  implicitly removes RAW hazards

»  values placed on a “common data bus”
»  reservation station slots are registers

•  implicit renaming

•  removes WAx hazard problem

•  Separate load and store Q’s
  deals with the memory dismbiguation issue

»  provides a write buffer (we’ll see more of this later)

24 CS6810
School of Computing
University of Utah

New Pipeline Model

•  Fetch
  in order into instruction queue

•  Dispatch
  in-order into an available reservation station

•  Issue
  happens when a res. station slot gets all of it’s operands

»  instruction packet goes into Execute

•  Mem & WB are concurrent
  makes sense since only LD & ST use the MEM stage

 anyway

  WB goes to waiting reservation stations, registers, or
 memory

•  Key point
  in-order fetch and dispatch

  out of order completion and issue

Page 13

25 CS6810
School of Computing
University of Utah

360/91 Tomasulo

26 CS6810
School of Computing
University of Utah

Tomasulo MIPS

Page 14

27 CS6810
School of Computing
University of Utah

Tomasulo Comments

•  CDB is the weak link
  needs to be wide enough to hold multiple XU results

  same laminarity issue with a width wrinkle
»  if you need to execute n instructions/cycle on average

•  fetch, dispatch, issue, CDB needs to support n as well

•  Locality
  layout has surprisingly local wires

»  no long wire round-trip as per scoreboard approach

  exception
»  CDB goes EVERYWHERE

•  power hog and a frequency barrier
–  high-C multi-drop bus has signal integrity and delay issues

–  fixed with repeaters but adds delay and power

28 CS6810
School of Computing
University of Utah

Tomasulo Memory Issues

•  Out of order loads and stores possible
  OK if addresses don’t match

•  Dynamic memory disambiguation
  stall loads if a pending store to the same address

  OR garner the value from the store unit

  stall stores when there is a pending load from a previous
 instruction

•  But what about speculation & exceptions
  note exceptions weren’t precise in 1969

»  as far as I can tell nothing was

»  famous Wavy Gravy comment
•  “if you can remember the 60’s you weren’t there”

  Add the ROB?
»  it worked before and it will again

Page 15

29 CS6810
School of Computing
University of Utah

Tomasulo + ROB

30 CS6810
School of Computing
University of Utah

Final Comments

•  This stuff is important conceptually
  advise to go through the exercises in the text

»  the mid-term will definitely have something similar

  BUT
»  don’t get too whacked on their particular algorithm

•  others exist

  some aspect of these ideas are likely useful in the future
»  for now instructions in a thread are sequential

•  HW dynamics can help exploit ILP

  key issue
»  socket/chip these days has multiple cores

»  maximizing performance/watt is a critical concern
•  speculation and HW dynamics can be too “watty”

–  but there’s no need to go crazy at least right now

–  and in the foreseeable future

