
Page 1

1 CS6810
School of Computing
University of Utah

ILP Basics & Branch Prediction

 Today’s topics:

Compiler hazard mitigation

 loop unrolling

 SW pipelining

Branch Prediction

2 CS6810
School of Computing
University of Utah

ILP

•  Parallelism independent enough
  e.g. avoid stalls

»  control – correctly predict decision
•  or use branch delay slots via proper scheduling

»  data – forwarding or instruction scheduling

»  structural – duplicate resources
•  or avoid conflict via scheduling

  hmm – scheduling looks like the key

•  What schedules?
  compiler

»  knows pipeline and latencies

»  and source code
•  note: programmers can help by writing clean code

»  can’t know some run time status however
•  e.g. how data dependent conditions resolve

  HW
»  needs to pitch in where the compiler can’t

3 CS6810
School of Computing
University of Utah

Basic Block Problems

•  Avg. dynamic branch frequency = 15%-25%
  branch every 3-6 instructions

»  ILP is going to be hard to find

•  Focus on loops
  major part of the execution time in the common case

»  Amdahl’s shouts in our ears here

»  optimize this equation over loops

•  Some loops are easy (basically vector ops)

»  known vector size & immediate value known to compiler

»  10 cycles: L.D, RAW stall, ADD.D, 2 RAW stalls, S.D, DADDUI,
 RAW stall, BNE, branch delay stall

4 CS6810
School of Computing
University of Utah

Smarter Schedule

•  6 cycles but still 1 stall
  need larger loop body in order to have a chance

  consider
»  DADDUI, BNE are loop overhead – 40% of total

»  rest are the actual work

Loop: L.D F0, 0(R1)
 stall
 ADD.D F4, F0, F2
 stall
 stall
 S.D F4, 0(R1)
 DADDUI R1, R1,# -8
 stall
 BNE R1, R2, Loop
 stall

Loop: L.D F0, 0(R1)
 DADDUI R1, R1,# -8
 ADD.D F4, F0, F2
 stall
 BNE R1, R2, Loop
 S.D F4, 8(R1)

Note key issue – S.D L.D potential for RAW stall
if target is same memory addr. e.g. disambiguation
problem.
No intervening R1 mod and 0!=8 so no problem

Page 2

5 CS6810
School of Computing
University of Utah

Loop Unrolling Bigger Basic Block

•  Basic idea
  take n loop bodies and catentate them

»  can’t use the same target registers or Wax stalls are a problem
•  increased register pressure limits value of n

»  adjust termination code

»  adjust offset values
•  only possible if value is immediate or a known constant in a register

•  Next idea
  schedule instructions to avoid existing stalls

»  a common case is shuffle rather than catenate

6 CS6810
School of Computing
University of Utah

4x Unroll

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 L.D F6, -8(R1)
 ADD.D F8, F6, F2
 S.D F8, -8(R1)
 L.D F10,-16(R1)
 ADD.D F12, F10, F2
 S.D F12, -16(R1)
 L.D F14, -24(R1)
 ADD.D F16, F14, F2
 S.D F16, -24(R1)
 DADDUI R1, R1, #-32
 BNE R1,R2, Loop

Simple Unroll: 12 work instructions, 2 overhead instructions
How many cycles per loop?

7 CS6810
School of Computing
University of Utah

5x Unroll

Loop: L.D F0, 0(R1)
 ADD.D F4, F0, F2
 S.D F4, 0(R1)
 L.D F6, -8(R1)
 ADD.D F8, F6, F2
 S.D F8, -8(R1)
 L.D F10,-16(R1)
 ADD.D F12, F10, F2
 S.D F12, -16(R1)
 L.D F14, -24(R1)
 ADD.D F16, F14, F2
 S.D F16, -24(R1)
 DADDUI R1, R1, #-32
 BNE R1,R2, Loop

Simple Unroll
How many cycles per loop?
4x(1 post L.D. stall + 2 post ADD.D stalls) = 12
+ 1 post DADDUI and 1 post BNE stall 14 total
+ 14 instructions crap still only 50% efficient

Loop: L.D F0, 0(R1)
 L.D F6, -8(R1)
 L.D F10,-16(R1)
 L.D F14, -24(R1)
 ADD.D F4, F0, F2
 ADD.D F8, F6, F2
 ADD.D F12, F10, F2
 ADD.D F16, F14, F2
 S.D F4, 0(R1)
 S.D F8, -8(R1)
 DADDUI R1, R1, # -32
 S.D F12, 16(R1)
 BNE R1,R2, Loop
 S.D F16, 8(R1)

Schedule – mostly a shuffle
no stalls 14 instructions & 4 loops
3.5 cycles per iteration =
2.857x speedup over 10 cycle original loop
1.7x speedup over scheduled unrolled loop

8 CS6810
School of Computing
University of Utah

Software Pipelining

•  Similar to loop unrolling but shuffle first
  often referred to as symbolic loop unrolling

  register/name management can be tricky
»  but same idea – create a single loop body

  add this to an already unrolled loop

Page 3

9 CS6810
School of Computing
University of Utah

Benefit Idea

10 CS6810
School of Computing
University of Utah

Dependency Tactic Synopsis

•  Consider when scheduling and unrolling
  data/RAW

»  unrolling can provide more independent instructions
•  up to register availability limit

»  schedule to remove RAW stalls

  name/Wax
»  rename to use different target registers

»  removes WAx stalls

  control
»  the tricky part: scheduling across branches

•  simple in this example since there were no loop carried
 dependencies

•  easy when iteration count and offset values are known constants

»  much harder when things aren’t vector ops

11 CS6810
School of Computing
University of Utah

Control Dependence Worries

•  Conditional branches
  instructions before the branch are “uncontrolled”

  instructions after the branch are “controlled”

•  Scheduling constraints
  must preserve controlled and uncontrolled nature of the

 original instructions

  note: control over multiple branches is transitive

•  Simple in-order pipelines
  instruction order is preserved

»  so compiler can handle the schedule
•  except for branch direction and memory latency uncertainties

  out of order completion of EX stage introduces complexity
»  increased book-keeping either by the compiler/HW or both

12 CS6810
School of Computing
University of Utah

Loop Carried Dependence

•  Consider

  S1 depends on an earler instance of S1
»  same with S2

»  now order matters unlike the vector-scalar add example

•  In general there are lots of loop carried dependencies
  large variety of types

»  some have work arounds and some don’t

»  save these issues for a bit later
•  since branches come into play

•  Hence – take on branch prediction next
  filling the branch delay slots helps but correct prediction is

 even better
»  speculation

Page 4

13 CS6810
School of Computing
University of Utah

Branch Prediction

•  Simple Idea
  let history predict the future

  can be simple – Baskett bit idea
»  arbitrarily complex if you want to be accurate

•  Static prediction
  compiler can help

»  predict taken (loop bias) has 34% error for SPEC
•  wide range depending on app however

»  profile code to get better probability
•  average mispredict improves to 9%

•  good enough?
–  given the penalty for blowing it – probably not

•  actual mispredict varies from 5% - 22% for the SPEC benchmarks

•  REMEMBER – benchmarks are not real apps
–  so reality is likely worse

•  Enter dynamic prediction
  track actual history in the HW and use as a prediction base

14 CS6810
School of Computing
University of Utah

Baskett Bit Expanded

•  Bimodal 1-bit entry in BHT (Branch History Table)

•  Problem
  for loops – 2 mispredictions per loop

»  exit is always a surprise

»  unless loop count is static
•  common in DSP’s so HW exists for this

•  not common enough in GP CPU’s so need something better

  high order bit alias problem (how likely is the problem?)

  how many bits above and below the 10 shown?

15 CS6810
School of Computing
University of Utah

2 Bit Predictor

•  Saturating counter

»  allows bias for whatever the compiler knows
•  loops vs. others – how does the compiler tell the HW?

•  which state should a loop branch start in?

•  what’s wrong with this state machine? why is it reasonable?

16 CS6810
School of Computing
University of Utah

Is Bigger Better

•  2 options
  more than 2 bit predictor

»  studies show that this isn’t a win

  more entries in the BHT
»  4K good enough for SPEC89

»  a bit more needed for real
codes or more modern
benchmarks

•  lower instruction locality

»  bigger BHT
•  reduces alias problem

»  experiment to find the sweet
spot

•  Note
  integer codes are a bigger

problem

  reality is even a bit worse
than BM’s

Page 5

17 CS6810
School of Computing
University of Utah

Correlating Predictors

•  As ILP and Issue width goes up
  need to predict over multiple branches

»  trace scheduling and trace caches come into play

•  Fortunately branches exist in a context
  e.g.

»  if first 2 fail then 3rd will be taken
•  dumb code for sure but simple example of correlation

»  non-correlating predictor will never capture this behavior

•  2-level correlating predictors
  take global information

»  what happened over some previous set of branches
•  if set has m members then it’s an m-bit vector

•  HW is a simple shift register

  (m,n) predictor
»  m bits of global, and n-bit predictor

if (aa==2) aa=0;
if (bb==2) bb=0;
if (aa!-bb) { … }

18 CS6810
School of Computing
University of Utah

(m,n) Predictor Problem

•  Assume
  m=10, n=2

  and branch ID is 10 bits

•  If we use all 20 bits
  need a 4M x 2-bit = 1MB BHT

  TOO EXPENSIVE

•  What should we do?

19 CS6810
School of Computing
University of Utah

(m,n) Predictor Problem

•  Assume
  m=10, n=2

  and branch ID is 10 bits

•  If we use all 20 bits
  need a 4M x 2-bit = 1MB BHT

  TOO EXPENSIVE

•  What should we do?
  hash the 20 bits into something smaller

  XOR is a good hash function
»  cheap and fast

20 CS6810
School of Computing
University of Utah

(10,2) Global Predictor (Gshare)

Page 6

21 CS6810
School of Computing
University of Utah

How Well Does it Work?

Even a (2,2) predictor:
significantly smaller BHT
and a 2-bit shift register works
better

22 CS6810
School of Computing
University of Utah

Local Predictor (Gselect)

How is the local history set?

23 CS6810
School of Computing
University of Utah

Which is Better?

•  Simple bi-modal (0,2) is the worst
  both Gshare and Gselect are an improvement

  Gshare is better than Gselect for table sizes > 256 bytes

•  But neither work all the time
  How can we fix this?

24 CS6810
School of Computing
University of Utah

Which is Better?

•  Simple bi-modal (0,2) is the worst
  both Gshare and Gselect are an improvement

  Gshare is better than Gselect for table sizes > 256 bytes

•  But neither work all the time
  How can we fix this?

  track both and see which one would have worked best
»  use a 2-bit saturating counter for this prediction as well

  result is a predictor predictor
»  since it sounds bogus it’s called a predictor selector

»  book calls it a tournament predictor
•  competition between local vs. global predictor

•  selector uses history to make the choice

»  see Scott McFarling’s 1993 paper if you want it from the
 source

•  link to .pdf is on the class web page

•  note renaming – original name “Combining Predictors”

Page 7

25 CS6810
School of Computing
University of Utah

Tournament Predictor

•  Basic idea
  TP is table of 2-bit counters

»  decoded into taken/not-taken
•  e.g. high order bit is the MUX select line

26 CS6810
School of Computing
University of Utah

Summary

•  Compare based on number of bits of state that needs to
 be kept (not counting final 2-bit predictor table)

