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ILP Basics & Branch Prediction 

 Today’s topics: 

Compiler hazard mitigation 

 loop unrolling 

 SW pipelining 

Branch Prediction 
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ILP 

•  Parallelism  independent enough 
  e.g. avoid stalls 

»  control – correctly predict decision 
•  or use branch delay slots via proper scheduling 

»  data – forwarding or instruction scheduling 

»  structural – duplicate resources  
•  or avoid conflict via scheduling 

  hmm – scheduling looks like the key 

•  What schedules? 
  compiler 

»  knows pipeline and latencies 

»  and source code 
•  note: programmers can help by writing clean code 

»  can’t know some run time status however 
•  e.g. how data dependent conditions resolve 

  HW 
»  needs to pitch in where the compiler can’t  
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Basic Block Problems 

•  Avg. dynamic branch frequency = 15%-25% 
   branch every 3-6 instructions 

»  ILP is going to be hard to find 

•  Focus on loops 
  major part of the execution time in the common case 

»  Amdahl’s shouts in our ears here 

»  optimize this equation over loops 

•  Some loops are easy (basically vector ops) 

»  known vector size & immediate value known to compiler 

»  10 cycles: L.D, RAW stall, ADD.D, 2 RAW stalls, S.D, DADDUI,
 RAW stall, BNE, branch delay stall 

4 CS6810 
School of Computing 
University of Utah 

Smarter Schedule 

•  6 cycles but still 1 stall 
  need larger loop body in order to have a chance 

  consider 
»  DADDUI, BNE are loop overhead – 40% of total 

»  rest are the actual work 

Loop:     L.D         F0, 0(R1)      
              stall 
              ADD.D    F4, F0, F2    
              stall 
              stall 
              S.D         F4, 0(R1)      
              DADDUI  R1, R1,# -8  
              stall 
              BNE        R1, R2, Loop 
              stall 

Loop:     L.D         F0, 0(R1)      
              DADDUI  R1, R1,# -8 
              ADD.D    F4, F0, F2    
              stall 
              BNE        R1, R2, Loop 
              S.D         F4, 8(R1)      

Note key issue – S.D  L.D potential for RAW stall  
if target is same memory addr. e.g. disambiguation  
problem. 
No intervening R1 mod and 0!=8 so no problem 
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Loop Unrolling  Bigger Basic Block 

•  Basic idea 
  take n loop bodies and catentate them 

»  can’t use the same target registers or Wax stalls are a problem 
•  increased register pressure limits value of n 

»  adjust termination code 

»  adjust offset values 
•  only possible if value is immediate or a known constant in a register 

•  Next idea 
  schedule instructions to avoid existing stalls 

»  a common case is shuffle rather than catenate 
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4x Unroll 

Loop:     L.D         F0, 0(R1)  
              ADD.D    F4, F0, F2    
              S.D         F4, 0(R1) 
              L.D         F6, -8(R1) 
              ADD.D    F8, F6, F2 
              S.D         F8, -8(R1) 
              L.D         F10,-16(R1) 
              ADD.D    F12, F10, F2 
              S.D         F12, -16(R1) 
              L.D          F14, -24(R1) 
              ADD.D    F16, F14, F2 
              S.D          F16, -24(R1) 
              DADDUI  R1, R1, #-32 
              BNE        R1,R2, Loop 

Simple Unroll: 12 work instructions, 2 overhead instructions 
How many cycles per loop? 
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5x Unroll 

Loop:     L.D         F0, 0(R1)  
              ADD.D    F4, F0, F2    
              S.D         F4, 0(R1) 
              L.D         F6, -8(R1) 
              ADD.D    F8, F6, F2 
              S.D         F8, -8(R1) 
              L.D         F10,-16(R1) 
              ADD.D    F12, F10, F2 
              S.D         F12, -16(R1) 
              L.D          F14, -24(R1) 
              ADD.D    F16, F14, F2 
              S.D          F16, -24(R1) 
              DADDUI  R1, R1, #-32 
              BNE        R1,R2, Loop 

Simple Unroll 
How many cycles per loop? 
4x(1 post L.D. stall + 2 post ADD.D stalls) = 12 
+ 1 post DADDUI and 1 post BNE stall 14 total 
+ 14 instructions  crap still only 50% efficient 

Loop:     L.D         F0, 0(R1)  
              L.D         F6, -8(R1) 
              L.D         F10,-16(R1) 
              L.D          F14, -24(R1) 
              ADD.D    F4, F0, F2   
              ADD.D    F8, F6, F2  
              ADD.D    F12, F10, F2 
              ADD.D    F16, F14, F2 
              S.D         F4, 0(R1) 
              S.D         F8, -8(R1) 
              DADDUI  R1, R1, # -32 
              S.D         F12, 16(R1) 
              BNE        R1,R2, Loop 
              S.D         F16, 8(R1)             

Schedule – mostly a shuffle 
no stalls 14 instructions & 4 loops 
3.5 cycles per iteration =  
2.857x speedup over 10 cycle original loop 
1.7x speedup over scheduled unrolled loop 
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Software Pipelining 

•  Similar to loop unrolling but shuffle first 
  often referred to as symbolic loop unrolling 

  register/name management can be tricky 
»  but same idea – create a single loop body 

  add this to an already unrolled loop  
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Benefit Idea 
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Dependency Tactic Synopsis 

•  Consider when scheduling and unrolling 
  data/RAW 

»  unrolling can provide more independent instructions 
•  up to register availability limit 

»  schedule to remove RAW stalls 

  name/Wax 
»  rename to use different target registers 

»  removes WAx stalls 

  control 
»  the tricky part: scheduling across branches 

•  simple in this example since there were no loop carried
 dependencies 

•  easy when iteration count and offset values are known constants 

»  much harder when things aren’t vector ops 
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Control Dependence Worries 

•  Conditional branches 
  instructions before the branch are “uncontrolled” 

  instructions after the branch are “controlled” 

•  Scheduling constraints 
  must preserve controlled and uncontrolled nature of the

 original instructions 

  note: control over multiple branches is transitive 

•  Simple in-order pipelines 
  instruction order is preserved 

»  so compiler can handle the schedule 
•  except for branch direction and memory latency uncertainties 

  out of order completion of EX stage introduces complexity 
»  increased book-keeping either by the compiler/HW or both 
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Loop Carried Dependence 

•  Consider 

  S1 depends on an earler instance of S1 
»  same with S2 

»   now order matters unlike the vector-scalar add example 

•  In general there are lots of loop carried dependencies 
  large variety of types 

»  some have work arounds and some don’t 

»  save these issues for a bit later 
•  since branches come into play 

•  Hence – take on branch prediction next 
  filling the branch delay slots helps but correct prediction is

 even better 
»  speculation  
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Branch Prediction 

•  Simple Idea 
  let history predict the future 

  can be simple – Baskett bit idea 
»  arbitrarily complex if you want to be accurate 

•  Static prediction 
  compiler can help 

»  predict taken (loop bias) has 34% error for SPEC 
•  wide range depending on app however 

»  profile code to get better probability 
•  average mispredict improves to 9% 

•  good enough? 
–  given the penalty for blowing it – probably not 

•  actual mispredict varies from 5% - 22% for the SPEC benchmarks 

•  REMEMBER – benchmarks are not real apps 
–  so reality is likely worse 

•  Enter dynamic prediction 
  track actual history in the HW and use as a prediction base 
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Baskett Bit Expanded 

•  Bimodal 1-bit entry in BHT (Branch History Table) 

•  Problem 
  for loops – 2 mispredictions per loop 

»  exit is always a surprise 

»  unless loop count is static 
•  common in DSP’s so HW exists for this 

•  not common enough in GP CPU’s so need something better 

  high order bit alias problem (how likely is the problem?) 

  how many bits above and below the 10 shown? 
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2 Bit Predictor 

•  Saturating counter 

»  allows bias for whatever the compiler knows 
•  loops vs. others – how does the compiler tell the HW? 

•  which state should a loop branch start in? 

•  what’s wrong with this state machine?  why is it reasonable? 
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Is Bigger Better 

•  2 options 
  more than 2 bit predictor 

»  studies show that this isn’t a win 

  more entries in the BHT 
»  4K good enough for SPEC89 

»  a bit more needed for real 
codes or more modern 
benchmarks 

•  lower instruction locality 

»  bigger BHT 
•  reduces alias problem 

»  experiment to find the sweet 
spot  

•  Note 
  integer codes are a bigger 

problem 

  reality is even a bit worse 
than BM’s 
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Correlating Predictors 

•  As ILP and Issue width goes up 
  need to predict over multiple branches 

»  trace scheduling and trace caches come into play 

•  Fortunately branches exist in a context 
  e.g. 

»  if first 2 fail then 3rd will be taken 
•  dumb code for sure but simple example of correlation  

»  non-correlating predictor will never capture this behavior 

•  2-level correlating predictors 
  take global information 

»  what happened over some previous set of branches 
•  if set has m members then it’s an m-bit vector 

•  HW is a simple shift register 

  (m,n) predictor 
»  m bits of global, and n-bit predictor 

if (aa==2) aa=0; 
if (bb==2) bb=0; 
if (aa!-bb) { … } 

18 CS6810 
School of Computing 
University of Utah 

(m,n) Predictor Problem 

•  Assume 
  m=10, n=2 

  and branch ID is 10 bits 

•  If we use all 20 bits 
  need a 4M x 2-bit = 1MB BHT 

  TOO EXPENSIVE 

•  What should we do? 
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(m,n) Predictor Problem 

•  Assume 
  m=10, n=2 

  and branch ID is 10 bits 

•  If we use all 20 bits 
  need a 4M x 2-bit = 1MB BHT 

  TOO EXPENSIVE 

•  What should we do? 
  hash the 20 bits into something smaller 

  XOR is a good hash function  
»  cheap and fast 
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(10,2) Global Predictor (Gshare) 
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How Well Does it Work? 

Even a (2,2) predictor: 
significantly smaller BHT 
and a 2-bit shift register works 
better 
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Local Predictor (Gselect) 

How is the local history set? 
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Which is Better? 

•  Simple bi-modal (0,2) is the worst 
  both Gshare and Gselect are an improvement 

  Gshare is better than Gselect for table sizes > 256 bytes 

•  But neither work all the time 
  How can we fix this? 
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Which is Better? 

•  Simple bi-modal (0,2) is the worst 
  both Gshare and Gselect are an improvement 

  Gshare is better than Gselect for table sizes > 256 bytes 

•  But neither work all the time 
  How can we fix this? 

  track both and see which one would have worked best 
»  use a 2-bit saturating counter for this prediction as well 

  result is a predictor predictor 
»  since it sounds bogus it’s called a predictor selector 

»  book calls it a tournament predictor 
•  competition between local vs. global predictor 

•  selector uses history to make the choice 

»  see Scott McFarling’s 1993 paper if you want it from the
 source 

•  link to .pdf is on the class web page 

•  note renaming – original name “Combining Predictors” 
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Tournament Predictor 

•  Basic idea 
  TP is table of 2-bit counters 

»  decoded into taken/not-taken 
•  e.g. high order bit is the MUX select line 
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Summary 

•  Compare based on number of bits of state that needs to
 be kept (not counting final 2-bit predictor table) 


