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Pipeline Complexities 

 Today’s topics: 

Hazards & forwarding details 

Distributed vs. Centralized control 

Out of order completion issues 

Exceptions 
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Pipeline Hazards 

•  Types 
  structural, data, and control 

•  Pathological code snippet 

  could be worse 
»  branches, long latency memory operations, exceptions 

»  stick w/ reg-reg as a start 
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Stage Resource View 
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Forward/Bypass 

•  Simple concept – somewhat hairy w.r.t. control 
  key idea is track where and when value is valid 

»  ALU value is valid at the end of stage 3 

»  MEM value valid at end of stage 4 
•  assumes L1 hit in 1 cycle 

–  reality is it could take ~3 cycles but assume 1 for now 

•  Control path responsibility 
  keep track of what is known when 

»  move data through mux paths to correct place to minimize
 stalls 

•  select lines to appropriate mux at the right time 

  2 options 
»  centralized vs. distributed 

•  central  
–  long wires but easier validation 

•  distributed 
–  shorter wires, harder validation, state moves through pipeline  
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Distributed Control 

•  Tag and compare 
  add reg name tags and valid bits to pipeline registers 

»  value is associated with Rd before it is actually placed in WB
 stage 

»  valid bit set when value is produced 

•  3 sources of Rs slot data 
  ALUout, ID/EX from the register, MEMout 

  clearly want the latest version  priority established 

•  Theory vs. reality 
  easy conceptually 

  but time marches on 
»  compare valid, and mux delays consume time 

»  increasingly difficult laminarity issue at increased frequencies 
•  3 GHz  333 ps budget 
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Centralized Control 

•  Scoreboard state 
  knows where each instruction is in the pipe 

»  e.g. when value becomes valid 

  directly controls mux select lines 
»  at the right time 

•  Value not available 
  stall appropriate stages 

•  Distributed/Centralized hybrid 
  in reality some aspects of both employed 

»  depends on frequency and core complexity 
•  lots of simple cores favor control 

•  big & complex favor distributed 
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Result w/ Forwarding 
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Hazard Forms 

•  Instruction i occurs before j 
  RAW – read after write 

»  j reads before i writes  j gets incorrect old value 

  WAW – write after write 
»  j writes before i writes  breaks semantic order 

•  not a problem in simple 5 stage MIPS pipe YET 

  WAR – write after read 
»  j writes before i reads  i gets incorrect too new value 

•  no problem in simple 5 stage MIPS since writing occurs late in piple
 and reads happen early in the pipe 

  WAW & WAR  Wax 
»  terminology 

  RAR – read after read 
»  not a hazard since producer-consumer data dependency not

 violated 

•  SW or HW fix – reorder instructions or NOP’s 
  same idea different mechanism 



Page 3 

9 CS6810 
School of Computing 
University of Utah 

Additional Problems 

•  Unknown memory latencies & speculation failure 
  compiler can’t predict this so HW mechanism required 

•  Bubbles or Stalls will happen in the worst case 
  distributed control 

»  pipeline stall blocks – predicate advance based on memory
 return or any speculative event 

•  more complex for out of order memory returns (more later) 

  centralized control 
»  effectively the same 

•  predicate “OK to advance” becomes an input to the FSM based
 control 

•  Amdahl’s Law – who are the main culprits? 
  depends on the code but in general (no particular order) 

»  cache misses – high for TPC 

»  branch mispredicts – high for gcc 

»  small basic blocks with tight dependencies – high for eqntott 
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Instruction Scheduling 

•  Key to exploiting ILP 
  lots more next but preview now 

•  Compiler 
  IR is a partial order 

»  static dataflow  

  knows pipeline structure of target machine 

  reorder instructions to minimize stalls 
»  several downsides 

•  compiler must be correct  conservative 

•  increased register pressure to reduce Wax induced stalls 
–  renamed pool helps until your run out 

–  problem is register “liveness” is not an exact science 

•  increases compiler complexity and time 
–  usually compile time considered free 

–  unless you’re in compile almost once mode 

–  also called student mode 

–  or where compile made hard to shorten XEQ time 

–  e.g. COSMOS 
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Simple Dataflow Example 
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Pipeline Control 

•  After ID stage – finally know what’s up 
  compiler may not give the HW the full picture 

»  typically doesn’t – welcome to HW optimization limits 

  forward or stall? 
»  mitigated by predicates 

•  Situations: 
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Responsibility 

•  Compiler – HW or both 
  track dependencies 

»  register centric viewpoint 

•  Overhead 
  forwarding  compare & mux  delay 

  mux rule 
»  increasing fan-in increases delay 

•  decode select signals 

•  fall-through delay of a wider mux 

  comparator rule 
»  quadratic w/ # of stages 

•  Delay 
  always a problem and must be carefully tracked 

»  more difficult when clock frequency increases 

»  designers need to stay within an F04 delay budget 
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EX Stage Mux Example 
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Register Source Compares 

16 CS6810 
School of Computing 
University of Utah 

ALU-Immediate Compares 
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Load Source Compares 
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Control Hazards 

•  More evil than data hazards 
  since forwarding doesn’t help 

•  Need 3 things – 2 happen late in the pipeline 
  branch target 

»  PC+4 if branch not taken or address (computed or immediate) 

  condition true? 
»  output of zero unit in MIPS 

»  condition code, … in other architectures 

  decode stage recognizes a branch or jump 

•  Result 
  IF of wrong instruction has already started 

•  Simple MIPS pipeline has 3 cycle branch delay penalty 
  effective address not known until EX 

  condition set in MEM (stage 4) 
»  3 branch delay slots 
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Branch Delay Reduction 

•  Hardware 
  compute address and zero detect earlier in the pipeline 

»  additional ALU 
•  BTA (branch taken address) can be computed in ID 

•  PC+4 already in ID 

•  move zero detect earlier in the pipe – e.g. ID 

»  result: 1 branch delay slot 

•  Depends on proper ISA choice 
  MIPS: BEQZ, BNEZ 

»  allows the condition to be a simple zero detect 

»  which can be determined in the ID stage 
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Improved MIPS Pipeline 

See any potential problem? 
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Taken vs. Not Taken 

•  Probability of a branch 
  11-17% branch, 2-8% jumps for MIPS, & 8086 

»  note this is for single issue 

•  What did the source code look like 
  if-then-else – 50% chance of going either way? 

  loops – branch is the common case >90% 

  bit or flag test  
»  usually to check for an error condition – taken rarely 

•  Other possibilities for the HW 
  backward vs. forward branch 

»  loops are backward 

  what happened last time 
»  Baskett bit – first branch prediction idea 

  pragma’s 
»  user or compiler hints about program dynamics 
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Control Hazard Avoidance 

•  Easy but slow 
  freeze pipe until you know for sure 

»  same as NOP insertion 

  negates the whole idea of pipelining 

•  Use some form of branch prediction 
  details next week 

  prediction will always fail sometime 
»  must prevent destructive change until outcome is known 

•  destructive = write to register or memory 

•  2 options 
  wait until you know 

»  write value temporarily held until commit 
•  see any issues with forwarding? 

  just write and then back up if you have to 
»  what’s the problem here? 
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Other Options 

•  Delayed Branch 
  fill delay slots 

»  since these happen before the branch happens anyway 
•  view the branch as being delayed 

»  compiler schedules instructions or generates NOPs 

•  Additional tactic 
  nullify delay slots (text term is “cancel”) 
  if prediction correct then things just move along 

  if not 
»  all or some of the delay slots get nullified 

»  consider 5 stage MIPS 
•  destructive ops happen in stage 4 & 5 

•  if branch resolves in stage 2 or 3 
–  plenty of time to cancel the 1 or 2 delay slots prior to their arrival at 4 & 5 

  common practice in HP’s PA architectures 
»  which morphed eventually into the IA64 (Itanium) 

•  although predication in IA64 is at the lunatic fringe 
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MIPS Wasted Delay Slots 

•  Represents 2 – 17% of total instructions 
  so actual impact to IPC/CPI is 2-17% of the waste 

»  numbers vary radically w/ branch penalty, speculation level,
 pipeline, and branch predictor  
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CPI Effect 

•  With ideal CPI=1 and stalls = freq x penalty 
  note penalty = 3 is bad but =1 or less is about the same 
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5 Axis Exception Model 

•  Sync vs. Async 
  synch – associated with a particular instruction 

»  handler replaces instruction and then retries or aborts 

  asynch – instruction independent (e.g. OS timeout) 
»  flush pipe and then handle 

»  power fail: may not have time to do a complete flush 

•  Code requested vs. coerced 
  req’d is predictable and can happen after instruction 

•  Maskable or not 
  arith. overflow: the code can care or not 

•  Within vs. between instructions 
  similar to sync/async w/ small difference 

•  Resume vs. terminate program 
  handle and resume, OR 
  fatal exception just terminates (e.g. segment error) 
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Examples 
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Within & Resume: Biggest Problem 

•  Shut down pipe safely 
  e.g. complete instructions before exception 

»  PC of restart point must be saved 
•  common PC and PC+4 saved 

•  retry resume or resume on next instruction 

•  MIPS strategy 
  set PC to start of handler and fetch 

  nuke/nullify instructions after excepting instruction 

  handle exception and then resume at the right spot 

•  OOPS – delayed branches (assume 2 delay slots) 
  1st delay slot generates a page fault 

  2nd instruction nuked and is restart point 

  then next and no branch happens 

   save delay slot size +1 of PC’s 
»  plus keep state of whether branch was taken or not 
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Exceptions 

•  The ultimate pain 
  semantic model guarantee 

»  instructions happen in order 

  problem 
»  instruction order and exception order happen out of order 

•  Precise exception model 
  rule 

»  all instructions before excepting instruction complete 

»  instructions after don’t happen 

»  excepting instruction handling varies 
•  w/ exception type 

  reality 
»  conservatism is slow 

»  typical is settable precise or not control 
•  precise when debugging 

•  non-precise when your code works 
–  done laughing yet? 
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Exceptions by Stage: Simple MIPS 

•  IF 
  page fault, TLB fault, misaligned address, mem protection

 violation 

•  ID 
  undefined or illegal opcode 

•  EX 
  arithmetic exception – overflow, underflow, NaN, … 

•  Mem 
  page fault, TLB fault, misaligned address, mem protection

 violation 

•  WB 
  none 

•  Result – on any cycle 4 exceptions could occur 
  rule – handle first one in program order 
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EX stage isn’t just a single pipeline 

•  Int +/- can be 1 cycle 
  all FP instructions and any mult/div/sqrt will take longer 

32 CS6810 
School of Computing 
University of Utah 

Latency & Repeat Interval 

•  Latency – number of cycles to generate value 
  w/ forwarding defined in your text to be the number of

 intervening instructions 

  hence 0 means next instruction can consume the result 

•  Repeat/Initiation interval 
  how often can you issue another one of this type of

 instruction 
»  defined in cycles – 1 means next cycle 

•  Example 

XU Latency Initiation Interval 

Inteter ALU 0 1 
Loads 1 1 
FP +/- 3 1 
FP/Int Mult 6 1 
FP/Int Div/SQRT 24 24 (why?) 
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Increased Hazard Complexity 

•  Out of order completion 
  WAW becomes harder 

»  since earlier write may complete later than later write 

  RAW hazards become more frequent 
»  due to increased latency of some instructions 

»  increases the load use delay separation 

  WAR not a problem 
»  since reads happen in ID and not influenced by expanded EX

 pipeline issues 

•  Exceptions 
  oh crap! 

»  lots more possible on any given cycle 
•  need to keep track of program order 

  reorder buffer 
»  more later  

•  Is complexity worth it – calculate and find out 
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Things you can do wrong 

•  Sophisticated address modes 
  trashing registers during EFA calculation  state save

 required  more registers or higher register pressure 
»  fill and spill to memory is expensive in time 

»  e.g. auto-increment or decrement 

•  Permit self-modifying code (ala 80x86) 
  overwrite an instruction in the pipeline 

»  exception and restart a different instruction 

»  oops 

•  Implicitly set condition codes 
  later instruction sets code 

  earlier but finishes later instruction sets code 
  branch comes along and uses the stale condition 

  fix? 
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MIPS R4000 Pipeline 

•  Real 64-bit machine 
  ran between 100-200 MHz 

»  still used in embedded world 

  deeper pipe but very similar ISA 
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Take Home Wisdom 

•  Pipelining 
  simple concept – arbitrarily hard to get right in reality 

•  Things will get even harder 
  superscalar – multiple issue per cycle 

  deeper pipelines to increase frequency 
»  laminarity and stall probability problems increase 

  compiler instruction scheduling gets trickier 
»  can the hardware make up some of the slack? 

•  yes but it’s complicated 

•  Late 80’s 
  improved performance ran out of gas 

  multiple issue saves the 90’s (ILP) 

  multiple cores saves the next decade – TBD? 
»  TLP affects the programmer 

»  pipelining and ILP didn’t 
•  for the most part 


