Pipeline Complexities

Today’s topics:
Hazards & forwarding details
Distributed vs. Centralized control
Out of order completion issues

Exceptions

School of Computing .
University of Utah

V)

Cs6810

Pipeline Hazards

* Types
= structural, data, and control
* Pathological code snippet

DADD R1,R2, R3 R1<--R2+R3

DSuB R4, RS, R1 yep - R1 gets produced
DAND R6, R7,R7 in the first instruction
OR R8, R7, R9 and used in every

XOR R10, R7, R11 subsequent instruction

maximal illustration
= could be worse

» long lat y ti
» stick w/ reg-reg as a start

School of Computing 2
University of Utah

U)

Cs6810

Stage Resource View

Clock
DADD R1,R2,R3 n I-llla I ﬂ | E
[

‘n

HEE e

DSUB R4,R1,R5

’ 1
AND R6,R1RT RS
L Hi= gy HH
HE
A}
OR R8,R1,R9

Note dependencies
are probable but
not always - due to

H=H

exceptions.
XOR R10,R1,R11
can be fixed
by splitting always OK
School of Computing
mj Unlversity of Utah 3 CS6810

Forward/Bypass

* Simple concept - somewhat halry w.r.t. control

= key idea is track where and when value is valid
» ALU value Is valld at the end of stage 3
» MEM value valld at end of stage 4
+ assumes L1 hit In 1 cycle
- reality Is It could take ~3 cycles but assume 1 for now
* Control path responsibility
= keep track of what is known when

» move data through mux paths to correct place to minimize
stalls
+ select lines to appropriate mux at the right ime
= 2 options
» i vs. di d
* central
- long wires but easler validation
« distributed
- shorter wires, harder valldation, state moves through pipeline

School of Computing
University of Utah

V)

a CS6810

Page 1

Distributed Control

* Tag and compare
= add reg name tags and valid bits to pipeline registers
» value Is lated with Rd bef Itls y pl din WB
stage
» valld bit set when value Is produced
* 3 sources of Rs slot data
= ALUout, ID/EX from the register, MEMout
= clearly want the latest version 2 priority established
* Theory vs. reality
= easy conceptually
= but time marches on
» compare valid, and mux delays consume time
» difficult Issue at
* 3 GHz > 333 ps budget

School of Computing

University of Utah s C86810

V)

Centralized Control

* Scoreboard state
= knows where each instruction is in the pipe
» e.g. when value becomes valid
= directly controls mux select lines
» at the right time
* Value not avallable
= stall appropriate stages
* Distributed/Centralized hybrid
= In reallity some aspects of both employed
» on fi and core

+ lots of simple cores favor control
* big & complex favor distributed

School of Computing

University of Utah 6 Cs6810

U)

Result w/ Forwarding

Clock

DADD R1,R2,R3 E_H_d RS Ila ‘.‘ ! RD}
ST
FHE R

/T

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

No need to
XOR R10,R1,R11 E‘SELE’.E'& w RS II'E I
anyway o
School of Computing
mj University of Utah 7 CS6810

Hazard Forms

* Instruction I occurs before)
= RAW - read after write
»] reads before | writes =] gets Incorrect ol/d value
= WAW - write after write
» j writes bof i wril = breal tic order
* not a problem In simple 5 stage MIPS pipe YET
= WAR - write after read
»] writes before | reads > | gets Incorrect foo new value

* no problem in simple 5 stage MIPS since writing occurs late in piple
and reads happen early In the pipe

= WAW & WAR > Wax
» terminology
= RAR - read after read

» notah d since prod data d d not
violated
¢ SW or HW fix - reorder Instructions or NOP’s
= same idea different mechanism
School of Computing
W university of Utah 8 cses10

Page 2

Additional Problems

¢ Unknown memory latencies & speculation failure
= compiler can’t predict this so HW mechanism required

* Bubbles or Stalls will happen in the worst case
= distributed control
» pipeline stall blocks -
return or any speculative event
* more complex for out of order memory returns (more later)
= centralized control
» effectively the same
. “OK to
control
* AmdahPs Law - who are the main culprits?
= depends on the code but In general (no particular order)
» cache misses - high for TPC
» branch mispredicts - high for gcc
» small basic blocks with tight dependencles - high for eqntott

based on memory

an Input to the FSM based

Instruction Scheduling

* Key to exploiting ILP
= lots more next but preview now
* Compiler
= IR Is a partlal order
» static dataflow
= knows plpeline structure of target machine
= reorder instructions to minimize stalls
» several downsides
+ complier must be correct 9 conservative
+ Increased reglister pressure to reduce Wax Induced stalls
- renamed pool helps untll your run out
- problem ls register “liveness” Is not an exact sclence
. and time
- usually complie time considered free
- unless you're In complie aimost once mode
- also called student mode
- or where complie made hard to shorten XEQ time
- @.g. COSMOS

!DJ School of Computing s CcS6810 !DJ School of Computing 10 ©s6810
University of Utah University of Utah
Simple Dataflow Example Pipeline Control
. = = — 9,
Consider the lowly * After ID stage - finally know what’s up
- . . - il I i
A=B+C Simple Expression Trees compiler may not give the HW the full picture
D=E-F ==> dependency digraph » typlcally doesn’t — to HW tion limits
= forward or stall?
» mitigated by predicates
* Situations:
LWRb, B LWRe, C LW Re, E LW Rf, F
Situation Sample Code | Action Required
\ B \ / 'No dependence LW R1,45(R2) 'No hazard since R1 doesnt show up in the next
7N Add Ra, Rb, R 7 X ADD RS, R6,R7 | 3instructions
) () SUB RBR6RT,
3, Rb, Re Sub Rd, Re, Rt T ORRSRGRT
'Dependence requiring stall | LW R1.45(R2) ‘comparators must detect the use of R1in ADD and
ADD R5.R1.RT ‘stall since LW can only produce the value after
SUB RBR6.RT, cycle 4 and ADD needs it aftes cycle 2 - hence no way
ORRSRGRT | (otefrom L perspetive ADD needs vale afe yc
SW A, Ra SW D, Rd D s
'Dependence can be LW R1.45(R2) ‘comparators detect R1 use in SUB and setup forward
Issue order choice Proceeds Via handled with forwarding ADD RS, R6, RT of result to ALU from end of DM stage
SUB RGRLRT,
simple cut set analysis ORRIRORT
2 2z Dependence but register LW R1,45(R2) R1will be wiritten in the first half of WB.
Optimal schedule requires look ahead and HAIR e sptingmkes | ADDRS, K6 7 | R1wi b e thesecond i dcode
ina non-issue SUB R8.R6.RT, for OR
ORRSRTRT | Hence noproem - b happy ina okcerword
School of Computin School of Computin
W univ tah 1 €s6810 W i 12 cses10
niversity of Utah University of Utah

Page 3

¢ Compiler - HW or both
= track dependencie

»
¢ Overhead
= forwarding 2 compare & mux 9 delay
= mux rule
»

fan-in i
+ decode select signals
« fali-through delay of a wider mux
= comparator rule
» quadratic w/ # of stages
* Delay
= always a problem and must be carefully tracked
» more difficult when clock frequency increases
» designers need to stay within an FO4 delay budget

delay

EX Stage Mux Example

EXMEM MEM/WB

Data

Memory

School of Computing

School of Computing
W) university of Utah 3 Cs6810 W) university of Utah 14 cses10
Register Source Compares ALU-Immediate Compares
to support full forwarding in the MIPS
Source Opcode of Dest. Opcode of Destination Compare
Source Dest. Destination Compare Pipe N Pipe of forwarded if EQ then
Pipe SOPCOdf of Pipe 8pcoc}e of of forwarded if EQ then Reg. Source Inst. Reg Dest. Inst. result forward
Reg. ource Inst. Reg est. Inst. result forward = -
EXMEM | ALU Immediate |ID/EX | Reg-Reg ALU Top ALU input RA(EXMEM.IRy1,15)
EXMEM |RegRegALU |IDIEX | Reg-RegALU | Top ALUinput | RAEXMEMIR;;) ALU-imm, LD, =
ALU-imm, LD, = ST, branch Rs1(D/EX.IRg, 10)
ST, branch Rs1D/EXIRs. o) EXMEM | ALUImmediate |IDIEX | Reg-RegALU | Bottom ALU input | RAEXMEMLIR,, 15)
EXMMEM | Reg-Reg ALU IDIEX | Reg-RegALU Bottom ALU input | RA(EXMEM.IR,5 »,) =
= Rs2(D/EXRy, 19)
Rs20D/EXIRy1.19 MEMWB | ALUImmediate |IDEX | Reg-RegALU | Top ALUnput | RAMEMMWB.IR, ; 15)
MEMWE |Reg-RegALU | IDIEX |Reg-RegALU | Top ALUinput | RAMEMMWE.IRy z) ALU-imm, LD, =
ALU-imm, LD, = ST, branch Rs1(D/EX.IRg, 10)
ST, branch Rs1(D/EX.IRs,_10)
MEWWB |ALU Immediate |ID/EX | Reg-Reg ALU Bottom ALU input | RAMEM/WB.IR;1_15)
MEM/WB | Reg-Reg ALU IDIEX | Reg-RegALU Bottom ALU input | RAMEM/WB.IR;4_2) =
= Rs2(D/EXRy, 19)
Rs2(D/EX.IRg 1) 1t
School of Computing 15 CS6810 mj School of Computing 16 €S6810

V)

University of Utah

University of Utah

Page 4

Load Source Compares

Source Opcode of Dest. Opcode of Destination Compare
Pipe s, r - Pipe ! of forwarded if EQ then
ource Inst. Dest. Inst.
Reg. Reg result forward
MEM/WB | Load IDIEX | Reg-Reg ALU Top ALU input RA(MEM/WB.IRy,15)
ALU-imm, LD, =
ST, branch Rs1(D/EX.IRg, 10)
MEM/WB | Load IDIEX | Reg-Reg ALU Bottom ALU input | RAMEM/WB.IR,4_45)
Rs2(D/EXIRyq 15)

School of Computing

V)

Control Hazards

* More evil than data hazards
= since forwarding doesn’t help
* Need 3 things - 2 happen late in the pipeline
= branch target
» PC+4 if branch not taken or
= condition true?
» output of zero unit in MIPS
» condition code, ... In other architectures
= d de stage a branch or jump
* Result
= IF of wrong instruction has already started
* Simple MIPS pipeline has 3 cycle branch delay penalty
= effectlve address not known untll EX
= condition set in MEM (stage 4)
» 3 branch delay slots

(ori

School of Computing

University of Utah ” Cs6810 W) university of Utah 1 Cs6810
Branch Delay Reduction Improved MIPS Pipeline
* Hardware -
= compute address and zero detect earlier in the pipeline IDEX EX/MEM MEM/WB
» additional ALU
* BTA taken) can be InID
* PC+4 already in ID
* move zero detect earller in the plpe - e.g. ID
» result: 1 branch delay slot
* Depends on proper ISA choice . H h
= MIPS: BEQZ, BNEZ ;‘g #D
» allows the condition to be a simple zero detect E H— Data
» which can be determined In the ID stage Mem
b L J
Sign
P Extond
- — — il
See any potential problem?
School of Computing School of Computing
W university of utah 1 cses10 W) university of Utah 20 Cs6810

Page 5

Taken vs. Not Taken

* Probability of a branch
= 11-17% branch, 2-8% jumps for MIPS, & 8086
» note this Is for single Issue
* What did the source code look like
= if-th Ise - 50% ch of going either way?
= loops -b h Is the case >90%
= bit or flag test

Control Hazard Avoidance

* Easy but slow
= freeze pipe until you know for sure
» same as NOP Insertlon
= negates the whole idea of pipelining
* Use some form of branch prediction
= detalls next week
= prediction will always fail sometime

» usually to check for an error condition - taken rarely » must p d until is
* Other possibilities for the HW . = write to or memory
= backward vs. forward branch * 2 options
» loops are backward = walt untll you know
= what happened last time » write value temporarily held untll commit
» Baskett bit - first branch prediction idea * see any Issues with forwarding?
= pragma’s = just write and then back up if you have to
» user or complier hints about program dynamics » what’s the problem here?
School of Computing School of Computing
W) university of Utah 2 Cs6810 W) university of Utah 22 Cs6810
Other Options MIPS Wasted Delay Slots
* Delayed Branch * Represents 2 — 17% of total Instructions
= fill delay slots = so actual impact to IPC/CPI is 2-17% of the waste
» since these happ f the yway » vary w/ D level,
« view the branch as belng delayed Ipeline, and b h p
» i hedules i ions or tes NOPs
9 Total | Empty
+ Additional tactic Code Wasted |~ Slots | Cancelled
= nullify delay slots (text term is “cancel”) compress 30% 18% 12%
= If prediction correct then things Just move along eqntott 35% 2% 1%
* if not espresso %) %] SPECint
» all or some of the delay slots get nuliifled ?“ 25: 1:" "://'
» consider 5 stage MIPS I 4 19% a%
« destructive ops happen In stage 4 & 5 doduc 40% 34% 6%
* If branch resolves In stage 2 or 3 ear 1% 37% %
- plenty of time to cancel the 1 or 2 delay slots prior to thelr amival at 4 & 5 hydrozd 16% 1% 15%| SPECfp
= common practice in HP’s PA architectures mdljdp 8% 1% %
» which morphed eventually into the 1A64 (Itanium) su2cor 17% % 10%
« although predication In 1A64 Is at the lunatic fringe
School of Computing School of Computing
W) university of utah = cses810 W) university of Utah 24 €S6810

Page 6

CPI Effect

* With ideal CPI=1 and stalls = freq x penalty
= note penalty = 3 is bad but =1 or less is about the same

Pipeline Depth
1 + Branch Frequency x Branch Penalty

Pipeline Speedup =

5 Axis Exception Model

¢ Sync vs. Async
= synch - associated with a particular instruction
» p Instr and then or aborts
= asynch - instruction independent (e.g. OS timeout)
» flush plpe and then handle
» power fall: may not have time to do a complete flush

Pipeline Pipeline
Sp‘eed“p Speedup * Code requested vs. coerced
Scheduling | Branch | Effective | over | g GIE0 = req'd Is predictable and can happen after Instruction
Scheme Penalty CPI Non-
piped B on h * Maskable or not
pipe ranc)
Version Scheme = arith. overflow: the code can care or not
Stall pipeline 3 142 35 10 * Within vs. bet\ instructi
Predict Taken 1 114 44 1.26 = simllar to sync/async w/ small difference
;"Id'"d": ""':“ o1s ::: :: "? + Resume vs. terminate program
elayed Brancl X g X 131
2y = handle and resume, OR
= fatal exception Just terminates (e.g. segment error)
School of Computing School of Computing
W) university of Utah s cses10 W) university of Utah 2 csea10
Examples Within & Resume: Biggest Problem
* Shut down plpe safely
= e.g. complete instructions before exception
s - — - » PC of restart point must be saved
Exc. Type ynchronous | Requested - | mask - within - resume -
A - Asynch. Coerced non-mask between terminate * common PC and PC#4 saved
O DeviceReq. | Asynch Coerced Non-maskable Between Resume * retry or on next
Invoke OS svc. Synch User Requested | Non-maskable Between Resume « MIPS strategy
Trace/Bkpoint Synch User Requested | Maskable Between Resume = get PC to start of handler and fetch
Arith. exception _| Synch. Coerced Maskable Within Resume * nuke/nulllfy Instructions after excepting Instruction
Page Fault Synch. Coerced Non-maskable Within Resume B N
Visaigned addr | Synch Coorced Maskable Within Resume = handle exception and then resume at the right spot
Wem_prol_viola- | Synch Coerced Non-maskable | Within Resume * OOPS - delayed branches (assume 2 delay slots)
tion _ _ _ = 1t delay slot generates a page fault
Undefined Inst. | Synch. Coerced - 22?2 Non-maskable Within Terminate - 22?2 2nd inst 4 ked di tart int
HW error Asynch. Coerced Non-maskable Within Terminate Instruction nuked and is restart poin
Pouer Failure Asynch Coerced Non-maskable | Within Terminate = then next and no branch happens
= - save delay slot size +1 of PC’s
» plus keep state of whether branch was taken or not
School of Computing School of Computing
()] University of Utah 27 C€S6810 ()] University of Utah 28 €S6810

Page 7

Exceptions

* The ultimate pain
= semantic model guarantee
» Instructions happen In order
= problem
» Instruction order and exception order happen out of order
* Preclse exception model
= rule
» all Instructions before excepting Instruction complete
» instructions after don’t happen
» excepting Instruction handling varies
+ wl exception type

= reallty
» conservatism is slow
» ty Is precise or not trol

* precise when debugging
* non-precise when your code works
- done laughing yet?

School of Computing

University of Utah 2

Cs6810

V)

Exceptions by Stage: Simple MIPS

e IF
= page fault, TLB fault, misaligned address, mem protection
violation
* ID
= undefined or lllegal opcode
* EX

= arithmetic exception - overflow, underflow, NaN, ...
* Mem

= page fault, TLB fault, misaligned address, mem protection
violation

- WB
* none

* Result - on any cycle 4 exceptions could occur
* rule - handle first one In program order

School of Computing

University of Utah Cs6810

30

U)

EX stage isn’t just a single pipeline

¢ Int +/- can be 1 cycle
= all FP instructions and any mult/div/sqrt will take longer

Note # of stages are 1+ latencygy

If Latency = x,
then x+1th inst.
can use the
result.

IF 1D MEM | WB

Outstanding H ﬁ H M .

instructions: Cycle time stays

short but what
4 adds D|D(D(D Not a real D other complexities
7 mult's 102[34]® pipeli ®) are now possible?
. pipeline
Tint
1 divide/sqrt

School of Computing

Unlversity of Utah 3 CS6810

V)

Latency & Repeat Interval

* Latency - number of cycles to generate value

= w/ forwarding defined in your text to be the number of
intervening instructions

= hence 0 means next instruction can consume the result
* Repeat/Initiation interval
= how often can you Issue another one of this type of

instruction
» defined in cycles -1 next cycle
* Example
(XU [Latency _____|initiation Interval
Inteter ALU (1] 1
Loads 1 1
FP +/- 3 1
FP/Int Mult 6 1
FP/Int Div/SQRT 24 24 (why?)
W) Uriversity of Utah s2 cses10

Page 8

Increased Hazard Complexity

* Out of order completion
= WAW becomes harder
» since write may
= RAW hazards b more fi
» due to Increased latency of some Instructions
» Increases the load use delay separation
= WAR not a problem
» since reads happen in ID and not influenced by expanded EX
pipeline issues
* Exceptions
= oh crap!
» lots more possible on any given cycle
* need to keep track of program order
= reorder buffer
» more later

* Is complexity worth It - calculate and find out

later than later write

School of Computing

University of Utah 33 C86810

V)

Things you can do wrong

* Sophisticated address modes
= trashing registers during EFA calculation - state save
required 9 more reglsters or higher register pressure
» flll and splil to memory Is expensive In time
» ©.g. auto-i t or d t
* Permit self-modifying code (ala 80x86)
= overwrlte an Instruction In the plpeline
» exception and restart a different instruction
» oops
* Implicitly set condition codes
= later instruction sets code
= earlier but finishes later instruction sets code
= branch comes along and uses the stale condition
= fix?

School of Computing

University of Utah 34 Cs6810

U)

MIPS R4000 Pipeline

* Real 64-bit machine
= ran between 100-200 MHz
» still used In embedded world
= deeper pipe but very similar ISA

! ! Write back for
, loads and RR

I 1 -y
\Dlata Cache DTala Cache \' ALU operations

st half 2nd half
FA, ALU, branch tgt.
comp., condix eval

egFetch, Icache hit
detect, hazard detect

Inst. 2nd: finish

ICache Fetch Tag Check - data

cache hit detect
Inst. First: PC select
start ICache Fetch

School of Computing

Unlversity of Utah 38 CS6810

V)

Take Home Wisdom

* Plpelining

= simple concept - arbitrarily hard to get right in reality
* Things will get even harder

= superscalar - multiple issue per cycle

= deeper plpelines to Increase frequency

» laminarity and stall probability probl
. pller Instructl heduling gets trickler

» can the hardware make up some of the slack?
+ yes but It's complicated

* Late 80’s
= Improved performance ran out of gas
= multiple issue saves the 90’s (ILP)

= multiple the next d de - TBD?
» TLP affects the programmer
» pipelining and ILP didn’t
« for the most part
School of Computing
W university of Utah 36 €s6810

Page 9

