

	to su	pport	full forward	ling in the M	IPS
Source Pipe Reg.	Opcode of Source Inst.	Dest. Pipe Reg	Opcode of Dest. Inst.	Destination of forwarded result	Compare if EQ then forward
EX/MEM	Reg-Reg ALU	ID/EX	Reg-Reg ALU ALU-imm, LD, ST, branch	Top ALU input	Rd(EX/MEM.IR _{16.20}) = Rs1(ID/EX.IR _{6.,10})
EX/MEM	Reg-Reg ALU	ID/EX	Reg-Reg ALU	Bottom ALU input	Rd(EX/MEM.IR ₁₆₂₀) = Rs2(ID/EX.IR ₁₁₁₅)
MEM/WB	Reg-Reg ALU	ID/EX	Reg-Reg ALU ALU-imm, LD, ST, branch	Top ALU input	Rd(MEM/WB.IR ₁₆₂₀) = Rs1(ID/EX.IR ₆₁₀)
MEM/WB	Reg-Reg ALU	ID/EX	Reg-Reg ALU	Bottom ALU input	Rd(MEM/WB.IR ₁₆₂₀) = Rs2(ID/EX.IR ₆₁₀)

Source Pipe Reg.	Opcode of Source Inst.	Dest. Pipe Reg	Opcode of Dest. Inst.	Destination of forwarded result	Compare if EQ then forward
EX/MEM	ALU Immediate	ID/EX	Reg-Reg ALU ALU-imm, LD, ST, branch	Top ALU input	Rd(EX/MEM.IR ₁₁₁₅) = Rs1(ID/EX.IR ₆₁₀)
EX/MEM	ALU Immediate	ID/EX	Reg-Reg ALU	Bottom ALU input	Rd(EX/MEM.IR ₁₁₁₅) = Rs2(ID/EX.IR ₁₁₁₅)
MEM/WB	ALU Immediate	ID/EX	Reg-Reg ALU ALU-imm, LD, ST, branch	Top ALU input	Rd(MEM/WB.IR ₁₁₁₅) = Rs1(ID/EX.IR ₆₁₀)
MEM/WB	ALU Immediate	ID/EX	Reg-Reg ALU	Bottom ALU input	Rd(MEM/WB.IR ₁₁₁₅) = Rs2(ID/EX.IR ₁₁₁₅)

Source	Opcode of	Dest.	Opcode of	Destination	Compare
Pipe Reg.	Source Inst.	Pipe Reg	Dest. Inst.	of forwarded result	if EQ then forward
MEM/WB	Load	ID/EX	Reg-Reg ALU ALU-imm, LD, ST, branch	Top ALU input	Rd(MEM/WB.IR ₁₁₁₅) = Rs1(ID/EX.IR ₆₁₀)
MEM/WB	Load	ID/EX	Reg-Reg ALU	Bottom ALU input	Rd(MEM/WB.IR ₁₁₁₅) = Rs2(1D/EX.IR ₁₁₁₅)

Control Hazards				
• More evil than data ha	zards			
 since forwarding does 	sn't help			
• Need 3 things – 2 happ	pen late in the pip	beline		
 branch target 				
» PC+4 if branch not t	aken or address (con	nputed or immediate)		
 condition true? 				
» output of zero unit i				
» condition code, ir				
 decode stage recogni 	izes a branch or jur	np		
• Result				
 IF of wrong instruction 	-			
Simple MIPS pipeline I	has 3 cycle brand	h delay penalty		
 effective address not 	known until EX			
 condition set in MEM 	(stage 4)			
» 3 branch delay slots	5			
School of Computing University of Utah	18	CS6810		

	act to IPC/	CPI is w/ brai	2-17% of nch penal	
Code	Total Wasted	Empty Slots	Cancelled	
compress	30%	18%	12%	
eqntott	35%	24%	11%	
espresso	34%	30%	4%	SPECint
gcc	26%	15%	11%	or Lonn
li	46%	19%	27%	
doduc	40%	34%	6%	
ear	41%	37%	4%	
hydro2d	16%	1%	15%	SPECfp
mdljdp	8%	1%	7%	
su2cor	17%	7%	10%	

ideal CPI=1 a te penalty = 3 i		_		-	ame
Pipeline Spe	edup = $\frac{1}{1 + B_1}$	Pipeline ranch Frequenc	e Depth cy × Branch Pe	malty	
Scheduling Scheme	Branch Penalty	Effective CPI	Pipeline Speedup over Non- piped Version	Pipeline Speedup over Stall Pipe on Branch Scheme	
Stall pipeline	3	1.42	3.5	1.0	1
Predict Taken	1	1.14	4.4	1.26	1
Predict Not Taken	1	1.09	4.5	1.29	1
Delayed Branch	0.5	1.07	4.6	1.31	1

5 Axis Exception Model				
• Sync vs. Async	C			
synch – asso	ciated with a particular instr	uction		
» handler re	places instruction and then retri	es or aborts		
	truction independent (e.g. OS and then handle	timeout)		
» power fail	: may not have time to do a com	olete flush		
Code requeste	d vs. coerced			
 req'd is pred 	ictable and can happen after	instruction		
• Maskable or n	ot			
 arith. overflo 	w: the code can care or not			
• Within vs. betv	ween instructions			
 similar to syn 	nc/async w/ small difference			
	rminate program			
 handle and read 				
	on just terminates (e.g. segm	ent error)		
School of Compu University of Uta		CS6810		

		•			
Exc. Type	Synchronous	Requested -	mask -	within -	resume -
	- Asynch.	Coerced	non-mask	between	terminate
I/O Device Req.	Asynch	Coerced	Non-maskable	Between	Resume
Invoke OS svc.	Synch	User Requested	Non-maskable	Between	Resume
Trace/Bkpoint	Synch	User Requested	Maskable	Between	Resume
Arith. exception	Synch.	Coerced	Maskable	Within	Resume
Page Fault	Synch.	Coerced	Non-maskable	Within	Resume
Misaligned addr.	Synch	Coerced	Maskable	Within	Resume
Mem. prot. viola- tion	Synch	Coerced	Non-maskable	Within	Resume
Undefined Inst.	Synch.	Coerced - ???	Non-maskable	Within	Terminate - ???
HW error	Asynch.	Coerced	Non-maskable	Within	Terminate
Power Failure	Asynch	Coerced	Non-maskable	Within	Terminate

	Latenoy	& Repeat	
• Lat	ency – number of	f cycles to gen	erate value
• •	w/ forwarding defin intervening instruc		to be the number of
	hence 0 means ne>	ct instruction ca	n consume the result
• Rej	peat/Initiation int	erval	
	instruction	4	
• Exa	» defined in cycles ample XU	-	Initiation Interval
• Exa	ample	- 1 means next cy Latency 0	
• Exa	xu	Latency	Initiation Interval
• Exa	XU Inteter ALU	Latency 0	Initiation Interval
• Exa	XU Inteter ALU Loads	Latency 0 1	Initiation Interval11
• Exa	XU Inteter ALU Loads FP +/-	Latency 0 1 3	Initiation Interval 1 1 1

Things you can do wrong					
• Sophisticated add	ress modes				
required → more » fill and spill to r	during EFA calculation registers or higher regi memory is expensive in tim ment or decrement	ister pressure			
Permit self-modify	ing code (ala 80x86)				
	ruction in the pipeline restart a different instruct	lon			
Implicitly set cond	ition codes				
 later instruction s 					
 earlier but finishe 	s later instruction sets	code			
 branch comes ald fix? 	ong and uses the stale o	condition			
School of Computing University of Utah	34	CS6810			

	Take Home Wisdom				
•	Pipelining				
	 simple concept – arbitraria 	itrarily hard to get rig	ght in reality		
• •	Things will get even h	arder			
	• superscalar – multipl				
	• deeper pipelines to i	ncrease frequency			
	» laminarity and stall	probability problems in	crease		
	 compiler instruction 	scheduling gets trick	cier		
	» can the hardware n yes but it's compil 	nake up some of the sla Icated	ck?		
•	Late 80's				
	 improved performance 	e ran out of gas			
	 multiple issue saves 	the 90's (ILP)			
	 multiple cores saves 	the next decade - T	BD?		
	 TLP affects the prop pipelining and ILP d for the most part 	-			
W	School of Computing University of Utah	36	CS6810		