Pipelines

Today’s topics:
*Evidence suggests there is some rust on this topic
*hence spend a week and move on
-also need some common terminology
*Attempt to present the ideal issues

*with some discussion on why ideal isn’t reality.

School of Computing

University of Utah 1 C86810

V)

Pipelining

* Computational assembly line
= each step does a small fraction 1/pipeline_depth of the job
= concurrent exectuion of pipeline_dept instructions
» performance is all about parallelism

* Vertical vs. Horlzontal concurrency
¢ Plpeline stage - 1 step In an N step plpe
= 1 cycle per stage

» ign - sl t stage set clock rate
» laminar Is the target
¢ Simple model
- clock
11
5 £ 5
= cL S cL —=eee = cL =
@ @ b
School of Computing
U] University of Utah 2 Cs6810

Pipeline Benefit = Performance

¢ Ideal performance
= ti P ruction = unpiped_instruction time/#stages
» asymptotic - overheads count
* +10% typlcally achleved
* 2 ways to view this performance enhancement
= logical
» work on several instructions at once
+ albelt In diferent stages of thelr execution
» parallelism
* average IPC reduced
= physical
» shorter = fi

School of Computing

Unlversity of Utah 3 CS6810

V)

Other Pipeline Benefits

* HW mechanism

= hidden from the SW so invisible to the user

= Just viewed as a benefit
* No programming Impact

= unless user needs the ultimate In performance

= lly left up to pil heduling & optimization
* Pipelines are everywhere

= key keep on Moore’s law curve In the 80’s

= 90’s just moved to multiple pipelines

= frequency wars

» push pipeline depth to lunatic fringe
* problems

- power o frequency
- overheads make Ideal performance a bit optimistic

School of Computing

Unlversity of Utah 4 CS6810

V)

Page 1

Consider MIPS64

* 5 steps in instruction execution
= fetch, decode, execute, mem, write-back
* Remember the ISA

0 5 6 101 15 16 3

I-type: loads and stores, R-immed

Opcode | rs1 rd immediate ALU ops, Condix branch (rs1 and
rd unused, Jump reg, J&Link reg
0 5 6 101 15 16 20 21 3
N R-type: reg-reg ALU ops (func=op)
|Opcode| rs1 | rs2 | rd ’ function | read/write special regs, and moves
J-type: Jump and Link, Jump,
|0pcode| Offset added to PC TRAP, and RFE

School of Computing

Stages vary by Instructions

* Stage 3
= Xeq reg-reg or calculate effective address or branch target

» for any Instruction
« only one role

* Stage 4
= only actlve on Load/Store/Jump/Branch
» LMD ¢ Mem[ALUoutput]
» Mem[ALUoutput] € SMD
» next PC = ALUoutput w/ condition
* JUMP - no condition
* Stage 5
= Reg-Reg
» Regs[IRg 5] € ALUoutput
= Reg - Immediate
» Regs[IR,,.45]1 € ALUoutput
= Load
» Regs[IRy, 451 € memory data return

School of Computing

W) university of Utah s cses10 W) university of Utah 6 cs6810
Example 5-stage Data-path Inter_Stage Registers
. * Pre-IF
IF . ID . EX .MEM. K WB et PG
‘ :e pipelined version L, E * IF:ID
T ™15 | = PC+4
I 1
! ! ! = IR: opcode, RS1, RS2, RD, Imm16, function
! Zero? ! :¢_1um these = Wbmux value
1 : :::; fengl&fS . ID:Ex
. you get
l '5\ l UOutput : pipelined = PC+4
2 | 'P’ | MIPS-VIOLA = IR1: Amux_sel, Bmux_sel, ALUop, Wbmux_sel, RWmem,
3 L | Mmux_sel
& ! ! = Immediate data: 16 or 26 bits
* EX:Mem

26 bit version
not shown

School of Computing
University of Utah

V)

CS6810

= ALUout, SMD, mux selector indices, R vs. W command
* M:WB
= ALUout, LMD

School of Computing

Unlversity of Utah 8 CS6810

V)

Page 2

How real was that?

* Depends
= real for simple architectures
» woefully over simplified for higher per
= not optimized
» 2 ALU’s
* IF and — but ALU’s are cheap so who cares?
» Harvard architecture

. and data
- typlcal at L1 - but unified below that

» 5x fre y for five g
* slowed down hy |llt.|'-lm. r.glstor overhea
* Data-path is only part of the architecture
= largest bit in terms of area
= easlest bit In terms of getting It right
= control path
» FSM or microcode or both?

School of Computing

University of Utah ° C86810

V)

Control vs. Data Example

* Look at a few typical components

Componet Data Control

Memory Address;, Data,, Data; RAS, CAS, RIW, Outgp,
Addrygiq

Counter Datay, Data; Carry,, Carry; Ctop, clear, up, down, Ldgy,
Outg,

Tri-state buffers Data,, Data; Outeq

Register Data,, Data; Ldep, Outey

ALU LDatai, RDatai, Data,, Carry,, | OP

Carry;

Mux Many-Data; Data, Select

DeMux Many-Data,, Data; Select

1 cycle Bamrel Shifter Data,, Data; Shift Amount

Sequential/Combinational clock oriented

U)

School of Computing
University of Utah

10 Cs6810

Control Path

+ Each component has control points
= register: load or output enable
= mux/demux: select lines
= memory: Rvs. W
= XU - optcode
* What vs. When
= when controlled by a clock
» SDR vs. DDR
= what controlled by FSM or uCode control point values
* Note
= book ignores this for the most part
» fine in a way
* tends to consume a small amount of area and power
* BUT tends to be the major problem
- In terms of getting It rightl!

School of Computing

University of Utah CS6810

V)

Example: FSM for a simple Add

Rx <-- Rx + Ry

No matter what the instruction IMRd, IR.d.en
| NPC.ld.en

is, we have to do this - - - -
Clock 1

Decoder will demux RS1 & RS2
fields to drive aprrolivriate
output enables of selected
source registers. Don't really
-~ know the instruction type so we
load them anyway plus the
immediate value as well.

R Ald.en, Bld.en d
Really a selection - but here _ Imi n

we know it's an Rtype sowe™ 7|~ - L
take this path

Decoder will drive "+" code to. ’
the ALU from the decoded IR
information ~-~ __ Note: steps 4and 5 could
/’have been combined since
7 foran ADD there are no

4 F

Clock 4

ALUout.select ’
Rd.ld.en
Clock

V)

School of Computing

University of Utah CS6810

Page 3

Full Control Scenario Pipeline Parallelism
* Best case - ex te 5 instructi at once
| Step1 | = Note pipeline fill and flush overhead
= in stead state
RRALU Load
— Instruction
’ Step 3 | ‘ Step 3 ‘ l Step 3 | ‘ Step 3 ‘ Clock # 1 2 3 4 : 6 7 8 2
i IF 1 EX MEM we
l l l i i+ IF D EX MEM [
l Step 4 | ‘ Step 4 ‘ ‘ Step 4 ‘ ‘ Step 4 ‘ :‘: i III: ‘E: l:: l:':‘ e
Q ‘— i 1F D EX MEM wB
Step 5
. Problem
After step 2, the instruction class is known
each class may require different control point assertions = conslder single | & D memory
Note that only the load requires all 5 cycles - dummy step 4 pads so » step 4 & 5 have a resource conflict
all instructions finish at the same time.
School of Computing School of Computing
W) university of Utah 13 Cs6810 W) university of Utah 14 csea10
Pipeline Characteristics Example
* Latency ¢ Unplpelined
= time it takes for an instruction to complete = 5 steps: 50, 50, 60, 50, 50 ns respectively
» worse w/ pipeline since latch delay added to critical path = total 260 ns
» "°"'""°:‘y ':::.“:’ " ':'I:::';"I“P"“’ * Tumn It Into a plpelined design
* stea s loesn’ r long
* branch miss_predicts, cache misses, real exceptions = 10 ns of “Iamlnarlty" penalty
- Theoughp et
= dominant feature If steady state Is common » P, frold, an rough defays
» compiler tries hard to make this true * Hence
= e.g. no = must run at sl t stage rate/clock = 65 ns
» cache misses = speedup 260/64 = 4x
» reglster misses » rather than Ildealized 5x
» speculation failures
» real exceptions
School of Computing School of Computing
W) university of Utah 1 €s6810 W) university of Utah 16 €s6810

Page 4

Pipeline Hair

¢ Laminarity is hard
= depends a lot on FO4 budget
» 20+ FO4 Is somewhat easy
» 13- has proven to be problematic
* Extra resources
= each stage needs it’s own
» design drill
« list all
* separate by stage
+ each stage needs It’s private set
* Example
= PC modification can’t use same ALU as arithmetic ops

= IF & Mem can’t same y
School of Computing
U] University of Utah 7 Cs6810

Pipeline Memory Issues

* More instructions on the fly

= d Y pr & bandwidth requirements
» Nx for N stage pipeline
* Key issue w/ memory
= it’s slow
» blgger ries are and more power

« tiled improves latency but not power
* Fixes
= Harvard architecture
» independent roles

» access patterns are different
+ optimization opportunity

= multi-I 1 he & y hierarchy
= speculative prefetch
- plpeline the v &

» works for both cache and main

School of Computing

University of Utah 18 Cs6810

U)

Hazards & Dependencies

* Conslder a palr of Instructions
* R5 = R2 + R3; R3 = R5 + R6
» write back of R5 happens In stage 5
» RS value needed by stage 3
» OOPS
* Enter bypass and stalls
= value actually known at end of stage 3
= used on next cycle In stage 3
= send/bypass value to stage 4 and to beginning of stage 3
» more logic and more control
+ add mux delay > catch-22
» d must be checked
+ time cash register goes KA-CHING
+ Impact on both data and control paths

School of Computing

Unlversity of Utah 19 CS6810

V)

3 Types of Hazards

* Structural
= resource contention of different pipeline stages
» reglster read In ID or register write In WB
* 2 ported register flle

- typlcal arith op Is 2 reads and one write > 3 ports: 2R and IW
- superscalar makes this worse

* Data
= dependency for either register source or destination
¢ Control

= PC incr ted or puted
» branch and jump effect
= pti > go else

» e.g. exception handler
» not so bad with an In-order execution style

+ total pain with out-of-order execution
- more on this later

School of Computing

University of Utah CS6810

20

V)

Page 5

Example Pipeline Activity

* From pipeline stage perspective

Stage PC Unit Memory Data Path

IF PC<«-PC+4 IR <-- Mem[PC]

D PC1<-PC IR1 <R A <--Rs1; B<--Rs2

EX DMAR <--A + (IR145)"® #2 IR1y5 4
or
ALUout<-Aop B
or
ALUout <- A op (IR149)"® ## IR145. 3,
or
ALUout < PC1 + (IR14g)"® #2 IR145,3¢
or
cond <-- (Rs1 op 0); SMDR <-- B

MEM if (cond) then LMDR <-- MEM[DMAR] | ALUout1 <-- ALUout

PC <-- ALUout or
MEM[DMAR] <-- SMDR
WwB Rd <~ ALUout1 or Rd <-- LMDR

Pipeline Activity

¢ From Instructi 1 perspective
Stage ALU instruction Load or Store Branch
IF IR <-- MEM[PC]; IR <-- MEM[PC]; IR <-- MEM[PC];
PC <--PC+4 PC <--PC+4 PC <-- PC+4
D A<--Rs1; B<-Rs2; PC1<-PC; | A<--Rs1; B<--Rs2; PC1<--PC; | A<--Rs1; B<--Rs2; PC1<--PC;
IR1<-IR IR1<--IR IR1<--IR
EX ALUout<--Aop B DMAR<--A+(IR11g)™® ## ALUout <-- PC1+(IR14)™® ##
or IR1146,31; 136,31
ALUout<--A op (IR14¢)"® ## | SMDR <-- B {itit's a store} cond <~ Rs10p0
IR146.31
MEM ALUout1 <-- ALUout LMDR <-- MEM[DMAR] it (cond) then PC<--ALUout
or
MEM[DMAR] <-- SMDR
WB Rd <-- ALUout1 RD <-- LMDR {it it's a load}

* note potential stage holes where nothing much happens
* note pre-decode (stages 1 & 2) - same for all

School of Computing

School of Computing
W) university of Utah 7 cses10 W) university of Utah 2 cses10
Hazards & Stalls Pipeline: Resource View
* Extra resources mitigate -
= data 2 bypass logic
* structural > duplicate r
= control 2 predict and speculate E
* When it fails !
instl
- stall (ot 1d) | H
» Ideal pipell peedup P d : :
* More realistic scenario . H !
= not all stages are necessary for every instruction inst2 ! !
» tation | trol path H :
1
inst3 : E H
A S i
ZStructural Hazard?
School of Computing School of Computing
W) university of Utah 2 €s6810 W) university of Utah 24 €s6810

Page 6

Stall Creates Pipeline Bubble

1d=inst0, . ' .

instl
(not 1d)

inst2

inst3

'
no REAL hazard if instl is not a load

School of Computing

University of Utah 25 C86810

V)

Calculating Stall Effects

Average i time without
Average instruction time with pipelining

Pipeline Speedup =

Pipeline Speedup = unpiped cycle time % unpiped CPI

piped cycle time piped CPI
_ _unpiped CPI
Ideal CPI Bipeline Depth

Therefore

unpiped cycle time < Ideal CPI x Pipeline Depth

Pipeline Speedup = piped cycle time piped CPI

School of Computing

University of Utah 26 Cs6810

U)

Calculating Further

However
piped CPI = Ideal CPI x Pipeline stall cycles = 1 + average stalls per instruction

Then if perfect balance: no overhead and cycle times equal

Speedup = CPI Unpiped
N © 1+ Pipeline stall cycles per instruction

If laminar then unpiped CPI = pipeline depth, hence

Pipeline Depth

S =
1 + Pipeline stalls per instruction

d
P P

Similar derivations for clock cycles are also possible

School of Computing

Unlversity of Utah 27 CS6810

V)

Conclusion: Beware of Overhead

¢ Cycle time
= red w/ incr d # of stag
» but latch Insertion adds to latency
» slze of Inter-stage registers Is large
+ Increased power due to lots of bits moved and stored

» Stall effects
= the deeper the pipeline
» reduced probabllity that nothing went wrong
» g from 1/N p Ideal
* High frequency
= active power linear w/ frequency
= stall restart is a problem w/ very high frequencies
» e.g. Prescott and Northwood
* AmdahPs Law
= not everything benefits
» no guessing - you have to run the sim’s

School of Computing

Unlversity of Utah 28 CS6810

V)

Page 7

