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Pipelines 

 Today’s topics: 

• Evidence suggests there is some rust on this topic 

• hence spend a week and move on 

• also need some common terminology 

• Attempt to present the ideal issues 

• with some discussion on why ideal isn’t reality.  
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Pipelining 

•  Computational assembly line 
  each step does a small fraction 1/pipeline_depth of the job 

  concurrent exectuion of pipeline_dept instructions 
»  performance is all about parallelism 

•  Vertical vs. Horizontal concurrency 

•  Pipeline stage – 1 step in an N step pipe 
  1 cycle per stage 

»  synchronous design – slowest stage set clock rate 

»  laminar is the target 

•  Simple model 
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Pipeline Benefit = Performance 

•  Ideal performance 
  time-per-instruction = unpiped_instruction time/#stages 

»  asymptotic – overheads count  
•  +10% typically achieved 

•  2 ways to view this performance enhancement 
  logical 

»  work on several instructions at once 
•  albeit in different stages of their execution 

»  parallelism 
•  average IPC reduced 

  physical 
»  shorter stages = increased frequency 
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Other Pipeline Benefits 

•  HW mechanism 
  hidden from the SW so invisible to the user 

  just viewed as a benefit 

•  No programming impact 
  unless user needs the ultimate in performance 

  usually left up to compiler scheduling & optimization 

•  Pipelines are everywhere 
  key keep on Moore’s law curve in the 80’s 

  90’s just moved to multiple pipelines 

  frequency wars 
»  push pipeline depth to lunatic fringe 

•  problems 
–  power α frequency 

–  overheads make ideal performance a bit optimistic  
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Consider MIPS64 

•  5 steps in instruction execution 
  fetch, decode, execute, mem, write-back 

•  Remember the ISA 

6 CS6810 
School of Computing 
University of Utah 

Stages vary by Instructions 

•  Stage 3 
  Xeq reg-reg or calculate effective address or branch target 

»  for any instruction 
•  only one role 

•  Stage 4 
  only active on Load/Store/Jump/Branch 

»  LMD  Mem[ALUoutput] 

»  Mem[ALUoutput]  SMD 

»  next PC = ALUoutput w/ condition 
•  JUMP – no condition 

•  Stage 5 
  Reg-Reg 

»  Regs[IR16..20]  ALUoutput 

  Reg – Immediate 
»  Regs[IR11..15]  ALUoutput 

  Load 
»  Regs[IR11..15]  memory data return 
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Example 5-stage Data-path 
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Inter_Stage Registers 

•  Pre-IF 
  Next PC 

•  IF:ID 
  PC+4 

  IR: opcode, RS1, RS2, RD, imm16, function 

  Wbmux value 

•  ID:EX 
  PC+4 

  IR1: Amux_sel, Bmux_sel, ALUop, Wbmux_sel, R/Wmem,
 Mmux_sel 

  immediate data: 16 or 26 bits 

•  EX:Mem 
  ALUout, SMD, mux selector indices, R vs. W command 

•  M:WB 
  ALUout, LMD 



Page 3 

9 CS6810 
School of Computing 
University of Utah 

How real was that? 

•  Depends 
  real for simple architectures 

»  woefully over simplified for higher performance architectures 

  not optimized 
»  2 ALU’s 

•  IF and EX – but ALU’s are cheap so who cares? 

»  Harvard architecture 
•  separate instruction and data memories 

–  typical at L1 – but unified below that 

»  5x frequency for five stages 
•  slowed down by inter-stage register overhea 

•  Data-path is only part of the architecture 
  largest bit in terms of area 

  easiest bit in terms of getting it right 

  control path 
»  FSM or microcode or both? 
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Control vs. Data Example   

•  Look at a few typical components 
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Control Path 

•  Each component has control points 
  register: load or output enable 

  mux/demux: select lines 
  memory: R vs. W 

  XU – optcode 

•  What vs. When 
  when controlled by a clock 

»  SDR vs. DDR 

  what controlled by FSM or uCode control point values 

•  Note 
  book ignores this for the most part 

»  fine in a way 
•  tends to consume a small amount of area and power 

•  BUT tends to be the major problem  
–  in terms of getting it right!! 
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Example: FSM for a simple Add 
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Full Control Scenario 
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Pipeline Parallelism 

•  Best case – execute 5 instructions at once 
  Note pipeline fill and flush overhead 

  in stead state  
»  5x frequency  ideal speedup 

•  Problem 
  consider single I & D memory 

»  step 4 & 5 have a resource conflict 
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Pipeline Characteristics 

•  Latency 
  time it takes for an instruction to complete 

»  worse w/ pipeline since latch delay added to critical path 

»  dominant feature if lots of exceptions 
•  steady state doesn’t last for long 

•  branch miss_predicts, cache misses, real exceptions 

•  Throughput 
  dominant feature if steady state is common 

»  compiler tries hard to make this true 

  e.g. no 
»  cache misses 

»  register misses 

»  speculation failures 

»  real exceptions 
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Example 

•  Unpipelined 
  5 steps: 50, 50, 60, 50, 50 ns respectively 

  total 260 ns 

•  Turn it into a pipelined design 
  10 ns of “laminarity” penalty 

  5 ns delay due to latches 
»  set-up, hold, and fall through delays 

•  Hence 
  must run at slowest stage rate/clock = 65 ns 

  speedup 260/64 = 4x 
»  rather than idealized 5x 
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Pipeline Hair 

•  Laminarity is hard 
  depends a lot on F04 budget 

»  20+ FO4 is somewhat easy 

»  13- has proven to be problematic 

•  Extra resources 
  each stage needs it’s own 

»  design drill 
•  list all possible instruction resource needs 

•  separate by stage 

•  each stage needs it’s private set 

•  Example 
  PC modification can’t use same ALU as arithmetic ops 

  IF & Mem can’t access same memory 
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Pipeline Memory Issues 

•  More instructions on the fly 
  increased memory pressure & bandwidth requirements 

»  Nx for N stage pipeline 

•  Key issue w/ memory 
  it’s slow 

»  bigger memories are slower and consume more power 
•  tiled improves latency but not power 

•  Fixes 
  Harvard architecture 

»  independent roles 

»  access patterns are different 
•  optimization opportunity 

  multi-level cache & memory hierarchy 

  speculative prefetch 

  pipeline the memory system 
»  works for both cache and main 
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Hazards & Dependencies 

•  Consider a pair of instructions 
  R5 = R2 + R3; R3 = R5 + R6 

»  write back of R5 happens in stage 5 

»  R5 value needed by stage 3 

»  OOPS 

•  Enter bypass and stalls 
  value actually known at end of stage 3 

  used on next cycle in stage 3 

  send/bypass value to stage 4 and to beginning of stage 3 
»  more logic and more control 

•  add mux delay  catch-22 

»  dependencies must be checked 
•  time cash register goes KA-CHING 

•  impact on both data and control paths 
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3 Types of Hazards 

•  Structural 
  resource contention of different pipeline stages 

»  register read in ID or register write in WB 
•  2 ported register file 

–  typical arith op is 2 reads and one write  3 ports: 2R and IW 

–  superscalar makes this worse 

•  Data 
  dependency for either register source or destination 

•  Control 
  PC incremented or computed 

»  branch and jump effect 

  exceptions  go somewhere else 
»  e.g. exception handler 

»  not so bad with an in-order execution style 
•  total pain with out-of-order execution 

–  more on this later 
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Example Pipeline Activity 

•  From pipeline stage perspective 
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Pipeline Activity 

•  From Instruction class perspective 
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Hazards & Stalls 

•  Extra resources mitigate 
  data  bypass logic 

  structural  duplicate resources 
  control  predict and speculate 

•  When it fails 
  stall  

»  ideal pipeline speedup compromised 

•  More realistic scenario 
  not all stages are necessary for every instruction 

»  implementation increases control path complexity 
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Pipeline: Resource View 
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Stall Creates Pipeline Bubble  
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Calculating Stall Effects 
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Calculating Further 
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Conclusion: Beware of Overhead 

•  Cycle time 
  reduces w/ increased # of stages 

»  but latch insertion adds to latency 

»  size of inter-stage registers is large 
•  increased power due to lots of bits moved and stored 

•  Stall effects 
  the deeper the pipeline 

»  reduced probability that nothing went wrong 

»  e.g. reduction from 1/N speedup ideal 

•  High frequency 
  active power linear w/ frequency 

  stall restart is a problem w/ very high frequencies 
»  e.g. Prescott and Northwood 

•  Amdahl’s Law 
  not everything benefits 

»  no guessing – you have to run the sim’s 


