
Page 1

1 CS6810
School of Computing
University of Utah

Pipelines

 Today’s topics:

• Evidence suggests there is some rust on this topic

• hence spend a week and move on

• also need some common terminology

• Attempt to present the ideal issues

• with some discussion on why ideal isn’t reality.

2 CS6810
School of Computing
University of Utah

Pipelining

•  Computational assembly line
  each step does a small fraction 1/pipeline_depth of the job

  concurrent exectuion of pipeline_dept instructions
»  performance is all about parallelism

•  Vertical vs. Horizontal concurrency

•  Pipeline stage – 1 step in an N step pipe
  1 cycle per stage

»  synchronous design – slowest stage set clock rate

»  laminar is the target

•  Simple model

3 CS6810
School of Computing
University of Utah

Pipeline Benefit = Performance

•  Ideal performance
  time-per-instruction = unpiped_instruction time/#stages

»  asymptotic – overheads count
•  +10% typically achieved

•  2 ways to view this performance enhancement
  logical

»  work on several instructions at once
•  albeit in different stages of their execution

»  parallelism
•  average IPC reduced

  physical
»  shorter stages = increased frequency

4 CS6810
School of Computing
University of Utah

Other Pipeline Benefits

•  HW mechanism
  hidden from the SW so invisible to the user

  just viewed as a benefit

•  No programming impact
  unless user needs the ultimate in performance

  usually left up to compiler scheduling & optimization

•  Pipelines are everywhere
  key keep on Moore’s law curve in the 80’s

  90’s just moved to multiple pipelines

  frequency wars
»  push pipeline depth to lunatic fringe

•  problems
–  power α frequency

–  overheads make ideal performance a bit optimistic

Page 2

5 CS6810
School of Computing
University of Utah

Consider MIPS64

•  5 steps in instruction execution
  fetch, decode, execute, mem, write-back

•  Remember the ISA

6 CS6810
School of Computing
University of Utah

Stages vary by Instructions

•  Stage 3
  Xeq reg-reg or calculate effective address or branch target

»  for any instruction
•  only one role

•  Stage 4
  only active on Load/Store/Jump/Branch

»  LMD  Mem[ALUoutput]

»  Mem[ALUoutput]  SMD

»  next PC = ALUoutput w/ condition
•  JUMP – no condition

•  Stage 5
  Reg-Reg

»  Regs[IR16..20]  ALUoutput

  Reg – Immediate
»  Regs[IR11..15]  ALUoutput

  Load
»  Regs[IR11..15]  memory data return

7 CS6810
School of Computing
University of Utah

Example 5-stage Data-path

8 CS6810
School of Computing
University of Utah

Inter_Stage Registers

•  Pre-IF
  Next PC

•  IF:ID
  PC+4

  IR: opcode, RS1, RS2, RD, imm16, function

  Wbmux value

•  ID:EX
  PC+4

  IR1: Amux_sel, Bmux_sel, ALUop, Wbmux_sel, R/Wmem,
 Mmux_sel

  immediate data: 16 or 26 bits

•  EX:Mem
  ALUout, SMD, mux selector indices, R vs. W command

•  M:WB
  ALUout, LMD

Page 3

9 CS6810
School of Computing
University of Utah

How real was that?

•  Depends
  real for simple architectures

»  woefully over simplified for higher performance architectures

  not optimized
»  2 ALU’s

•  IF and EX – but ALU’s are cheap so who cares?

»  Harvard architecture
•  separate instruction and data memories

–  typical at L1 – but unified below that

»  5x frequency for five stages
•  slowed down by inter-stage register overhea

•  Data-path is only part of the architecture
  largest bit in terms of area

  easiest bit in terms of getting it right

  control path
»  FSM or microcode or both?

10 CS6810
School of Computing
University of Utah

Control vs. Data Example

•  Look at a few typical components

11 CS6810
School of Computing
University of Utah

Control Path

•  Each component has control points
  register: load or output enable

  mux/demux: select lines
  memory: R vs. W

  XU – optcode

•  What vs. When
  when controlled by a clock

»  SDR vs. DDR

  what controlled by FSM or uCode control point values

•  Note
  book ignores this for the most part

»  fine in a way
•  tends to consume a small amount of area and power

•  BUT tends to be the major problem
–  in terms of getting it right!!

12 CS6810
School of Computing
University of Utah

Example: FSM for a simple Add

Page 4

13 CS6810
School of Computing
University of Utah

Full Control Scenario

14 CS6810
School of Computing
University of Utah

Pipeline Parallelism

•  Best case – execute 5 instructions at once
  Note pipeline fill and flush overhead

  in stead state
»  5x frequency  ideal speedup

•  Problem
  consider single I & D memory

»  step 4 & 5 have a resource conflict

15 CS6810
School of Computing
University of Utah

Pipeline Characteristics

•  Latency
  time it takes for an instruction to complete

»  worse w/ pipeline since latch delay added to critical path

»  dominant feature if lots of exceptions
•  steady state doesn’t last for long

•  branch miss_predicts, cache misses, real exceptions

•  Throughput
  dominant feature if steady state is common

»  compiler tries hard to make this true

  e.g. no
»  cache misses

»  register misses

»  speculation failures

»  real exceptions

16 CS6810
School of Computing
University of Utah

Example

•  Unpipelined
  5 steps: 50, 50, 60, 50, 50 ns respectively

  total 260 ns

•  Turn it into a pipelined design
  10 ns of “laminarity” penalty

  5 ns delay due to latches
»  set-up, hold, and fall through delays

•  Hence
  must run at slowest stage rate/clock = 65 ns

  speedup 260/64 = 4x
»  rather than idealized 5x

Page 5

17 CS6810
School of Computing
University of Utah

Pipeline Hair

•  Laminarity is hard
  depends a lot on F04 budget

»  20+ FO4 is somewhat easy

»  13- has proven to be problematic

•  Extra resources
  each stage needs it’s own

»  design drill
•  list all possible instruction resource needs

•  separate by stage

•  each stage needs it’s private set

•  Example
  PC modification can’t use same ALU as arithmetic ops

  IF & Mem can’t access same memory

18 CS6810
School of Computing
University of Utah

Pipeline Memory Issues

•  More instructions on the fly
  increased memory pressure & bandwidth requirements

»  Nx for N stage pipeline

•  Key issue w/ memory
  it’s slow

»  bigger memories are slower and consume more power
•  tiled improves latency but not power

•  Fixes
  Harvard architecture

»  independent roles

»  access patterns are different
•  optimization opportunity

  multi-level cache & memory hierarchy

  speculative prefetch

  pipeline the memory system
»  works for both cache and main

19 CS6810
School of Computing
University of Utah

Hazards & Dependencies

•  Consider a pair of instructions
  R5 = R2 + R3; R3 = R5 + R6

»  write back of R5 happens in stage 5

»  R5 value needed by stage 3

»  OOPS

•  Enter bypass and stalls
  value actually known at end of stage 3

  used on next cycle in stage 3

  send/bypass value to stage 4 and to beginning of stage 3
»  more logic and more control

•  add mux delay  catch-22

»  dependencies must be checked
•  time cash register goes KA-CHING

•  impact on both data and control paths

20 CS6810
School of Computing
University of Utah

3 Types of Hazards

•  Structural
  resource contention of different pipeline stages

»  register read in ID or register write in WB
•  2 ported register file

–  typical arith op is 2 reads and one write  3 ports: 2R and IW

–  superscalar makes this worse

•  Data
  dependency for either register source or destination

•  Control
  PC incremented or computed

»  branch and jump effect

  exceptions  go somewhere else
»  e.g. exception handler

»  not so bad with an in-order execution style
•  total pain with out-of-order execution

–  more on this later

Page 6

21 CS6810
School of Computing
University of Utah

Example Pipeline Activity

•  From pipeline stage perspective

22 CS6810
School of Computing
University of Utah

Pipeline Activity

•  From Instruction class perspective

23 CS6810
School of Computing
University of Utah

Hazards & Stalls

•  Extra resources mitigate
  data  bypass logic

  structural  duplicate resources
  control  predict and speculate

•  When it fails
  stall

»  ideal pipeline speedup compromised

•  More realistic scenario
  not all stages are necessary for every instruction

»  implementation increases control path complexity

24 CS6810
School of Computing
University of Utah

Pipeline: Resource View

Page 7

25 CS6810
School of Computing
University of Utah

Stall Creates Pipeline Bubble

26 CS6810
School of Computing
University of Utah

Calculating Stall Effects

27 CS6810
School of Computing
University of Utah

Calculating Further

28 CS6810
School of Computing
University of Utah

Conclusion: Beware of Overhead

•  Cycle time
  reduces w/ increased # of stages

»  but latch insertion adds to latency

»  size of inter-stage registers is large
•  increased power due to lots of bits moved and stored

•  Stall effects
  the deeper the pipeline

»  reduced probability that nothing went wrong

»  e.g. reduction from 1/N speedup ideal

•  High frequency
  active power linear w/ frequency

  stall restart is a problem w/ very high frequencies
»  e.g. Prescott and Northwood

•  Amdahl’s Law
  not everything benefits

»  no guessing – you have to run the sim’s

