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Instruction Set Architecture 
ISA 

 Today’s topics: 

• Note: desperate attempt to get back on schedule 

• we won’t cover all of these slides – use for
 reference 

• Risk vs. CISC 

• x86 does both 

• ISA influence on performance & complexity 

• some basic examples 

• fetch and decode issues 
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ISA 

•  What is it really? 
  set of instructions 
  THE HW/SW contract 

»  compiler correctly translates source code to the ISA 
»  assembler translates to relocatable binary 
»  linker solidifies relocatables into object code 
»  HW promises to do what the object code says 

  upside 
»  ISA provides “reasonable” SW abstraction of the HW 
»  what is missing? 

  downside 
»  reverse compatible requirement  “hide what you can” effect 

•  Options 
  fixed vs. variable length, instructions (RISC, CISC), memory

 modes, etc. 
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Instruction Characteristics 

•  Simple operation 
  op-code 

•  Operand addressing 
  explicit – source address is explicit  

  implicit – source address implied by the op code or
 architecture 

•  Address target 
  memory (CISC) vs. register (RISC) 

  RISC exception: load and store, jumps and calls 

•  # of operands – 0, 1, 2, 3  
  0  stack machine: pop 0, 1, or 2 then push result 

  1  single accumulator: acc  acc OP address target 

  2  GPR machine: R[RS0]  R[RS0] OP R[RS1] 

  3  GPR machine: R[RS0]  R[RS1] OP R[RS2] 
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What Instructions are Needed 

•  Very few if you want to get bonkers 
  PDP-0 had a 3-bit opcode field – what 8 would you pick? 

»  hint: 1 was HALT 

  Ivan’s 1 instruction computer only used MOVE 
»  saves op-code bits since there’s only 1 and you don’t need to

 specify it explicitly 

•  More normal – varies significantly with segment 
  arithmetic and logical 

»  choice of what data types to support 

»  fused: MAC 

  control: branch, jump, call, return, branch 

  OS – ignore these for now 
  string 

  bit field manipulation 
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ISA Affects Everything 
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Classifying ISA’s 
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Form and Function are Related 
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Modern Choice - GPR 

•  Why? 
  lBM legacy to some extent – they were dominant at the

 right time 
  compiler optimizations for GPR 

»  simpler cost model so easier to evaluate options 
»  register scheduling easier than memory operations 
»  stack lost due to compilers 

•  and JB who came from IBM to be CEO of Burroughs 
•  the company went down the tubes in 3 years 
•  not clear that stack machines deserved the bad rap they got in

 history 

•  Platform independence 
  if GPR’s dominate then it’s a bigger pain for the compilers

 to also handle something that is very different 
  software lives forever and HW evolves very quickly 

•  Compiler technology is still key 
  to extracting the performance of the HW 
  advanced today for the GPR world 
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Sample Comparison 

•  Examine datapath and control strategies 

•  Datapath assumptions for this example 
  only direct addressing 

  8 bit opcode  

  16 bit registers 

  16 bit memory address field 

  no byte or half-word to keep things simple 
»  use 32-bit values 

  simple tri-state bus as well 

•  Control assumptions 
  micro-code like here 

  in reality implemented by FSM controller 
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Instruction Formats 
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Things to note 

•  Abbreviations 
  IR – instruction register 

  MAR – memory address register 
  MDR – memory data register 

  ALU – arithmetic and logical unit 

•  Ridiculously simple example 
  ignores many critical issues 

  idea is to convey what gets built 
»  and how to start thinking about an implementation 
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Accumulator Datapath 

Note: this was the model used in the 
first stored program computers in the  
late 40’s 
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Accumulator Control 
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Stack Datapath 
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Stack Control (over simplified) 
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GPR Datapath 
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GPR Control 
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Text’s classification for ISA types 

•  (# of memory operands, Max ALU operands) 
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(0,3) Reg-Reg: Pro’s and Con’s 

•  Pure RISC 
  only load and store go to memory 

•  Advantages: 
  simple fixed length instruction 

»  simplifies decode 

  simple code generation 

  simple cost model 
»  since CPI for instructions will be known 

»  exception is load store 
•  and in today’s high frequency world some things are a little more

 iffy 

•  Disadvantages 
  high IC  Imem footprint 

  some instructions don’t need all of the instruction word bits 
»   mem footprint 
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(1,2)/(1,3) Reg-Mem P’s & C’s 

•  Evolved RISC and old CISC – go figure? 
  some new RISC machines 

»  speculative loads 

»  predicated or deferred loads 

•  Pro’s 
  no need to do a load before a use 

  instruction format is still simple 

  improved code density 

•  Con’s 
  source operands are not equivalent in (1,2) 

»  1 reg source value is destroyed with result value 

»  memory address field needs to be bigger than register field 

»  CPI varies for anything from memory: cache, main, disk?? 
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(3,3) mem-mem P’s and C’s 

•  Ultimate gaggy CISC 
  extinct now and likely to remain that way 

•  Pro’s 
  small instruction footprint? 

»  not clear given need for 3 large addresses 

  doesn’t waste a register for touch once data 
»  register file consumes a lot of power  heat 

•  Con’s 
  large variation in instruction size 
  large variation in CPI 

»  compiler just gives up 

  high memory pressure 
»  memory is always the bottleneck 

  slowest machine imaginable 
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Memory Addressing   

•  Natural questions 
  what is accessed: byte, word, multiple words?? 

»  legacy today is byte addressing which is silly 

  disks, main memory, caches, and the memory bus 
»  all organized with some “chunk” size in mind 

•  caches have chunk = line 

•  memory & bus chunk matches lowest level cache line size 

•  disks deliver in page sized chunks 

•  Alignment problems are possible 
  accessing a word or double which crosses a cache line

 boundary 
»  requires 2 references rather than 1 

»  more CPI ambiguity 

»  bad idea but guess who allows this? 
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Words and byte order 

•  The Lilliputian Wars 
  IEEE Computer article by Prof. James Finnegan 

»  Oceanview Univ, Oceanview, KS 

•  Big vs. Little Endian 
  Big Endian – byte 0 is the MSB 

  Lil’ Endian – byte 0 is the LSB 

•  Is this a problem? 
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Words and byte order 

•  The Lilliputian Wars 
  IEEE Computer article by Prof. James Finnegan 

»  Oceanview Univ, Oceanview, KS 

•  Big vs. Little Endian 
  Big Endian – byte 0 is the MSB 

  Lil’ Endian – byte 0 is the LSB 

•  Is this a problem? 
  yes – I/O delivers bytes in numerical order 

•  Today’s solution 
  an Endian bit in a control register 

  determines which side of words fill first (MSB vs. LSB) 
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Processor Alignment Checks 

•  Common convention 
  expect aligned data 

  opcode determines what you load or store 
»  LDB – byte; LDW – word; etc. 

  NOTE: 
»  we’re in 64-bit processor land now but we define word = 32b 

•  Hardware checks for valid byte address based on load or
 store type 
  byte – any address is legal 

  half word – address must have a low order bit = 0 else trap 

  word – addr must have 2 low order bits = 0 else trap 

  double – addr. must have 3 low order bits = 0 else trap 
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Typical Address Modes I 

27 CS6810 
School of Computing 
University of Utah 

Typical Address Modes II 
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Mode Mind Games 

•  Best way to understand utility of addr. modes 
  pick a few small loops from your own codes 

  see what instructions would be required using various
 modes 

»  e.g. if you don’t have a mode then effective address will need
 to require extra instructions in your object code 

  think about how you would encode the instruction set that
 contains what you like 

  do a block diagram of the effective address path that would
 support your instruction set. 

»  often an integer word add is a good measure of what can be
 done in 1 clock cycle. 

»  estimate how many cycles each address mode would require 

•  Hint 
  questions like this tend to show up on the first mid-term 
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Mode Importance via benchmarks 

30 CS6810 
School of Computing 
University of Utah 

Address Field Size? 

•  Measure and optimize for the common case 
  Analyze your programs 

»  get dynamic instruction traces or counts 

»  want a broad benchmark spectrum & optimized compiler runs 

•  Choose 
  displacement field size 

  immediate or literal size 

  address modes 

  register file size 

•  Then evaluate cost implications 
  datapath  CPI and cycle time 

  code density and instruction decoding overhead 

  ISA encoding overhead 
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Displacement Values 
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Do we need Immediate data? 
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OK – what size immediate 
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SPEC2000 Operand Sizes 
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DSP Address Modes 

•  Data is typically an infinite stream 
  hence model memory as a circular buffer 

»  register holds a pointer to current access 
»  2 registers hold start and end points 
»  auto increment/decrement + end detection 

  modulo or circular mode 

•  FFT is a common app. 
  butterfly or shuffle is the common access stride 
  bit-reverse mode 

»  reverses n low order bits in the address 
»  n is a parameter since it varies with FFT step  

•  Importance: 54 DSP codes on a TI C54x DSP proc. 
  immediate, displacement , reg. indirect, direct = 70% 
  auto inc/dec = 20% 
  all other modes collectively = 10% 
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Media and Signal Processing 

•  New data types 
  vertex 

»  4 float vector: x, y, z, w 

  pixel 
»  4 byte sized int’s: R, G, B, A (transparency) 

•  New numeric types 
  fixed point numbers between -1 and 1 

  all mantissa: fixed point between 0 and 1 

•  New operations 
  inner product is very common 

»  fused instructions = MAC 

»  usage: b = ax + previous b 
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The Ubiquitous x86 
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Summary 

•  Simple is good 
  compilers  better code generation and optimization

 quality 

  machine  speed 

•  Beware the 90-10 rule though 
  10% of the static instructions take 90% of the time 

»  must use dynamic counts/traces 

•  Can we punt on complex instructions? 
  depends on performance 

»  the 10% can get arbitrarily bad 

  depends on cost 
»  some new types, modes, etc. are almost free 

  or sadly 
»  some idiot just wanted to fingerprint the design 


