
Page 1

1 CS6810
School of Computing
University of Utah

Instruction Set Architecture
ISA

 Today’s topics:

• Note: desperate attempt to get back on schedule

• we won’t cover all of these slides – use for
 reference

• Risk vs. CISC

• x86 does both

• ISA influence on performance & complexity

• some basic examples

• fetch and decode issues

2 CS6810
School of Computing
University of Utah

ISA

•  What is it really?
  set of instructions
  THE HW/SW contract

»  compiler correctly translates source code to the ISA
»  assembler translates to relocatable binary
»  linker solidifies relocatables into object code
»  HW promises to do what the object code says

  upside
»  ISA provides “reasonable” SW abstraction of the HW
»  what is missing?

  downside
»  reverse compatible requirement  “hide what you can” effect

•  Options
  fixed vs. variable length, instructions (RISC, CISC), memory

 modes, etc.

3 CS6810
School of Computing
University of Utah

Instruction Characteristics

•  Simple operation
  op-code

•  Operand addressing
  explicit – source address is explicit

  implicit – source address implied by the op code or
 architecture

•  Address target
  memory (CISC) vs. register (RISC)

  RISC exception: load and store, jumps and calls

•  # of operands – 0, 1, 2, 3
  0  stack machine: pop 0, 1, or 2 then push result

  1  single accumulator: acc  acc OP address target

  2  GPR machine: R[RS0]  R[RS0] OP R[RS1]

  3  GPR machine: R[RS0]  R[RS1] OP R[RS2]

4 CS6810
School of Computing
University of Utah

What Instructions are Needed

•  Very few if you want to get bonkers
  PDP-0 had a 3-bit opcode field – what 8 would you pick?

»  hint: 1 was HALT

  Ivan’s 1 instruction computer only used MOVE
»  saves op-code bits since there’s only 1 and you don’t need to

 specify it explicitly

•  More normal – varies significantly with segment
  arithmetic and logical

»  choice of what data types to support

»  fused: MAC

  control: branch, jump, call, return, branch

  OS – ignore these for now
  string

  bit field manipulation

Page 2

5 CS6810
School of Computing
University of Utah

ISA Affects Everything

6 CS6810
School of Computing
University of Utah

Classifying ISA’s

7 CS6810
School of Computing
University of Utah

Form and Function are Related

8 CS6810
School of Computing
University of Utah

Modern Choice - GPR

•  Why?
  lBM legacy to some extent – they were dominant at the

 right time
  compiler optimizations for GPR

»  simpler cost model so easier to evaluate options
»  register scheduling easier than memory operations
»  stack lost due to compilers

•  and JB who came from IBM to be CEO of Burroughs
•  the company went down the tubes in 3 years
•  not clear that stack machines deserved the bad rap they got in

 history

•  Platform independence
  if GPR’s dominate then it’s a bigger pain for the compilers

 to also handle something that is very different
  software lives forever and HW evolves very quickly

•  Compiler technology is still key
  to extracting the performance of the HW
  advanced today for the GPR world

Page 3

9 CS6810
School of Computing
University of Utah

Sample Comparison

•  Examine datapath and control strategies

•  Datapath assumptions for this example
  only direct addressing

  8 bit opcode

  16 bit registers

  16 bit memory address field

  no byte or half-word to keep things simple
»  use 32-bit values

  simple tri-state bus as well

•  Control assumptions
  micro-code like here

  in reality implemented by FSM controller

10 CS6810
School of Computing
University of Utah

Instruction Formats

11 CS6810
School of Computing
University of Utah

Things to note

•  Abbreviations
  IR – instruction register

  MAR – memory address register
  MDR – memory data register

  ALU – arithmetic and logical unit

•  Ridiculously simple example
  ignores many critical issues

  idea is to convey what gets built
»  and how to start thinking about an implementation

12 CS6810
School of Computing
University of Utah

Accumulator Datapath

Note: this was the model used in the
first stored program computers in the
late 40’s

Page 4

13 CS6810
School of Computing
University of Utah

Accumulator Control

14 CS6810
School of Computing
University of Utah

Stack Datapath

15 CS6810
School of Computing
University of Utah

Stack Control (over simplified)

16 CS6810
School of Computing
University of Utah

GPR Datapath

Page 5

17 CS6810
School of Computing
University of Utah

GPR Control

18 CS6810
School of Computing
University of Utah

Text’s classification for ISA types

•  (# of memory operands, Max ALU operands)

19 CS6810
School of Computing
University of Utah

(0,3) Reg-Reg: Pro’s and Con’s

•  Pure RISC
  only load and store go to memory

•  Advantages:
  simple fixed length instruction

»  simplifies decode

  simple code generation

  simple cost model
»  since CPI for instructions will be known

»  exception is load store
•  and in today’s high frequency world some things are a little more

 iffy

•  Disadvantages
  high IC  Imem footprint

  some instructions don’t need all of the instruction word bits
»   mem footprint

20 CS6810
School of Computing
University of Utah

(1,2)/(1,3) Reg-Mem P’s & C’s

•  Evolved RISC and old CISC – go figure?
  some new RISC machines

»  speculative loads

»  predicated or deferred loads

•  Pro’s
  no need to do a load before a use

  instruction format is still simple

  improved code density

•  Con’s
  source operands are not equivalent in (1,2)

»  1 reg source value is destroyed with result value

»  memory address field needs to be bigger than register field

»  CPI varies for anything from memory: cache, main, disk??

Page 6

21 CS6810
School of Computing
University of Utah

(3,3) mem-mem P’s and C’s

•  Ultimate gaggy CISC
  extinct now and likely to remain that way

•  Pro’s
  small instruction footprint?

»  not clear given need for 3 large addresses

  doesn’t waste a register for touch once data
»  register file consumes a lot of power  heat

•  Con’s
  large variation in instruction size
  large variation in CPI

»  compiler just gives up

  high memory pressure
»  memory is always the bottleneck

  slowest machine imaginable

22 CS6810
School of Computing
University of Utah

Memory Addressing

•  Natural questions
  what is accessed: byte, word, multiple words??

»  legacy today is byte addressing which is silly

  disks, main memory, caches, and the memory bus
»  all organized with some “chunk” size in mind

•  caches have chunk = line

•  memory & bus chunk matches lowest level cache line size

•  disks deliver in page sized chunks

•  Alignment problems are possible
  accessing a word or double which crosses a cache line

 boundary
»  requires 2 references rather than 1

»  more CPI ambiguity

»  bad idea but guess who allows this?

23 CS6810
School of Computing
University of Utah

Words and byte order

•  The Lilliputian Wars
  IEEE Computer article by Prof. James Finnegan

»  Oceanview Univ, Oceanview, KS

•  Big vs. Little Endian
  Big Endian – byte 0 is the MSB

  Lil’ Endian – byte 0 is the LSB

•  Is this a problem?

24 CS6810
School of Computing
University of Utah

Words and byte order

•  The Lilliputian Wars
  IEEE Computer article by Prof. James Finnegan

»  Oceanview Univ, Oceanview, KS

•  Big vs. Little Endian
  Big Endian – byte 0 is the MSB

  Lil’ Endian – byte 0 is the LSB

•  Is this a problem?
  yes – I/O delivers bytes in numerical order

•  Today’s solution
  an Endian bit in a control register

  determines which side of words fill first (MSB vs. LSB)

Page 7

25 CS6810
School of Computing
University of Utah

Processor Alignment Checks

•  Common convention
  expect aligned data

  opcode determines what you load or store
»  LDB – byte; LDW – word; etc.

  NOTE:
»  we’re in 64-bit processor land now but we define word = 32b

•  Hardware checks for valid byte address based on load or
 store type
  byte – any address is legal

  half word – address must have a low order bit = 0 else trap

  word – addr must have 2 low order bits = 0 else trap

  double – addr. must have 3 low order bits = 0 else trap

26 CS6810
School of Computing
University of Utah

Typical Address Modes I

27 CS6810
School of Computing
University of Utah

Typical Address Modes II

28 CS6810
School of Computing
University of Utah

Mode Mind Games

•  Best way to understand utility of addr. modes
  pick a few small loops from your own codes

  see what instructions would be required using various
 modes

»  e.g. if you don’t have a mode then effective address will need
 to require extra instructions in your object code

  think about how you would encode the instruction set that
 contains what you like

  do a block diagram of the effective address path that would
 support your instruction set.

»  often an integer word add is a good measure of what can be
 done in 1 clock cycle.

»  estimate how many cycles each address mode would require

•  Hint
  questions like this tend to show up on the first mid-term

Page 8

29 CS6810
School of Computing
University of Utah

Mode Importance via benchmarks

30 CS6810
School of Computing
University of Utah

Address Field Size?

•  Measure and optimize for the common case
  Analyze your programs

»  get dynamic instruction traces or counts

»  want a broad benchmark spectrum & optimized compiler runs

•  Choose
  displacement field size

  immediate or literal size

  address modes

  register file size

•  Then evaluate cost implications
  datapath  CPI and cycle time

  code density and instruction decoding overhead

  ISA encoding overhead

31 CS6810
School of Computing
University of Utah

Displacement Values

32 CS6810
School of Computing
University of Utah

Do we need Immediate data?

Page 9

33 CS6810
School of Computing
University of Utah

OK – what size immediate

34 CS6810
School of Computing
University of Utah

SPEC2000 Operand Sizes

35 CS6810
School of Computing
University of Utah

DSP Address Modes

•  Data is typically an infinite stream
  hence model memory as a circular buffer

»  register holds a pointer to current access
»  2 registers hold start and end points
»  auto increment/decrement + end detection

  modulo or circular mode

•  FFT is a common app.
  butterfly or shuffle is the common access stride
  bit-reverse mode

»  reverses n low order bits in the address
»  n is a parameter since it varies with FFT step

•  Importance: 54 DSP codes on a TI C54x DSP proc.
  immediate, displacement , reg. indirect, direct = 70%
  auto inc/dec = 20%
  all other modes collectively = 10%

36 CS6810
School of Computing
University of Utah

Media and Signal Processing

•  New data types
  vertex

»  4 float vector: x, y, z, w

  pixel
»  4 byte sized int’s: R, G, B, A (transparency)

•  New numeric types
  fixed point numbers between -1 and 1

  all mantissa: fixed point between 0 and 1

•  New operations
  inner product is very common

»  fused instructions = MAC

»  usage: b = ax + previous b

Page 10

37 CS6810
School of Computing
University of Utah

The Ubiquitous x86

38 CS6810
School of Computing
University of Utah

Summary

•  Simple is good
  compilers  better code generation and optimization

 quality

  machine  speed

•  Beware the 90-10 rule though
  10% of the static instructions take 90% of the time

»  must use dynamic counts/traces

•  Can we punt on complex instructions?
  depends on performance

»  the 10% can get arbitrarily bad

  depends on cost
»  some new types, modes, etc. are almost free

  or sadly
»  some idiot just wanted to fingerprint the design

