Instruction Set Architecture
ISA

Today’s topics:
*Note: desperate attempt to get back on schedule

*we won’t cover all of these slides - use for
reference

*Risk vs. CISC

*x86 does both

*ISA infl

on perfor & plexity

some basic examples

fetch and decode issues

School of Computing

University of Utah 1 C86810

V)

ISA

* What is it really?
= set of Instructions
= THE HW/SW contract
» tly code to the ISA
» t lates to table binary
» linker solldifles relocatables Into object code
» HW promises to do what the object code says

= upside
» ISA provi oy ble” SW tion of the HW
» what Is missing?
= downside
» patible requi t > “hide what you can” effect
* Options
= fixed vs. variable length, instructions (RISC, CISC), memory
modes, etc.

School of Computing

University of Utah 2 Cs6810

U)

Instruction Characteristics

* Simple operation
= op-code
¢ Operand addressing
= explicit - source address is explicit

= Implicit - source address Implied by the op code or
architecture

* Address target
= memory (CISC) vs. register (RISC)
= RISC exception: load and store, Jumps and calls
¢ # of operands -0,1,2,3
= 0 9 stack machine: pop 0, 1, or 2 then push result
= 1 2 single accumulator: acc € acc OP address target
= 2 9 GPR machine: R[RS0] € R[RS0] OP R[RS1]
= 3 9 GPR machine: R[RS0] € R[RS1] OP R[RS2]

School of Computing

Unlversity of Utah 3 CS6810

V)

What Instructions are Needed

* Very few If you want to get bonkers
= PDP-0 had a 3-bit opcode field - what 8 would you pick?
» hint: 1 was HALT
= Ivan’s 1 instruction computer only used MOVE
» saves op-code bits since there’s only 1 and you don’t need to
speclfy It explicitly
* More normal - varies significantly with segment
= arithmetic and logical
» cholce of what data types to support
» fused: MAC
= control: branch, jump, call, return, branch
= OS - ignore these for now
= string
= bit fleld manipulation

School of Computing

Unlversity of Utah 4 CS6810

V)

Page 1

ISA Affects Everything

The problem: XEQ; = #Instructions x CPI x cycle-time
Iset influences everything + legacy effect!

Instruction
Source
Code
H Instruction
H Decode
1
.,
. 1.’ CPI & cycleT
¥4 Optimizing
Compiler Object CPl and
Code Datapath
Complexity
School of Computing
U} University of Utah s Cs6810

Classifying ISA’s

Based on CPU internal storage options
AND operand-arity

Operand Storage in CPU

Number of explicit operands
named per instruction

Where are they other than memory
How many? Min, Max - maybe even average

Addressing Modes How is the effective address for an operand calcu-
lated? Can all operands use any mode?

Operations What are the options for the opcode?

Type and size of operands How is typing done? How is the size specified

These choices critically affect - #instructions, CPl, and
cycle time

School of Computing

University of Utah 6 Cs6810

U)

Form and Function are Related

Consider the class pro’s and con'’s

Machine Type |Advantages Disadvantages

Stack Simple effective address Lack of random access.
Shortinstructions Efficient code is difficult to
Good code density generate.
Simple I-decode Stack is often a bottleneck.

Accumulator Minimal internal state Very high memory traffic
Fast context switch
Shortinstructions
Simple I-decode

Register Lots of code generation Longer instructions.
options. Possibly complex effective
Efficient code since compiler | address generation.
has numerous useful Size and structure of register
options. set has many options.

School of Computing

University of Utah 7 CS6810

V)

Modern Choice - GPR

o Why?
. I:Mhlte acy to some extent - they were dominant at the
g
= compiler optimizations for GPR
» simpler cost model so easier to evaluate options
» register scheduling easler than memory operations
» stack lost due to compilers
* and JB who came from IBM to be CEO of Buiroughs
+ the company went down the tubes In 3 years

. nﬁt ::Inr that stack machines deserved the bad rap they got in
story

¢ Platform independence

= If GPR’s domlinate then It’s a bigger paln for the compllers
to also handle something that is very differe!

= software lives f and HW Ives very quickly
¢ Complier technology Is stlll key
= to extracting the performance of the HW
= advanced today for the GPR world

School of Computing

Unlversity of Utah 8 CS6810

V)

Page 2

Sample Comparison

Instruction Formats

* Examine datapath and control strategies
* Datapath assumptions for this example

= only direct addressing

= 8 bit opcode

= 16 bit registers

= 16 bit memory address field

= no byte or half-word to keep things simple

» use 32-bit values

= simple trl-state bus as well
¢ Control assumptions

= micro-code like here

Accumulator - 24 bit instruction

8-bit 16-bit
OpCode Memory Address

Stack - also 24 bit but most instructions will be 8-bit (pack-em)

8-bit 16-bit
OpCode Memory Address

Register - 2 explicit operands (3 explicit is obvious) - 28 bits

« in reality impl ted by FSM troller 8-bit 4-bit 16-bit
OpCode Reg-addr Memory Address
* could pack but instruction word allignment would be a
problem.
School of Computing School of Computing
W) university of Utah ° csee10 W university of Utah 1 €s6810
Things to note Accumulator Datapath
* Abbreviations
= IR - instruction register
= MAR - y address regist -
= MDR - memory data reglster A -
= ALU - arithmetic and logical unit - ALU
 Ridiculously simple example “TT™
= Ignores many critical Issues ‘
» idea is to convey what gets built m | MDR | | MAR
» and how to start thinking about an Implementation i I T
————y
Note: this was the model used in the M
first stored program computers in the emory
late 40's
mj School of Computing " CS6810 mj School of Computing 12 CS6810

University of Utah

University of Utah

Page 3

Accumulator Control

Loads
Read Memory, Enable Memory to Accumulator
Load Accumulator

Stores
Enable Accumulator to MBUS
Write Memory

ALU Op’s
Read Memory
Enable ALU to Accumulator
Load Accumulator

Branch - just like an IFetch but with PC as address source
Read Memory
Enable Memory to MIR
Load MIR

V)

School of Computing

University of Utah C86810

Stack Datapath

| A p—

Top
__________ \
Overflow i
and |
1

1

/

Stack
Buffer

Underflow?

———==x

ALU

| MIRIMAR | |

S

Memory

School of Computing

University of Utah 14

U)

Cs6810

Stack Control (over simplified)

Loads
Read Memory
Push

Stores
Enable Top to MBUS, Write Memory
Pop
ALU Op’s
Load Top or Next
Pop or not

Branch - just like an IFetch but with PC as address source
Read Memory
Enable Memory to MIR
Load MIR

V)

School of Computing

University of Utah CS6810

GPR Datapath

Lopnd + R Sel

Register
Array

ALU

Ropnd Sel

| MIR | |

Memory
MAR path omitted

School of Computing

University of Utah 16

V)

CS6810

Page 4

GPR Control

1 Loads - just like accumulator but select Reg.
[Stores - just like accumulator but select Reg.
1 Branch - same as all the rest
1 ALU OPs - whoal

« select Left operand and result register

« decide whether you want memory or a register for the right
operand

« note minimum of 3 busses between the Register array and the
ALU

1 Effective memory address calculation
¢ immediate
* register pointer

« register alu-op registers
* possible auto-increment or decrement on one of them

School of Computing

University of Utah C86810

V)

Text’s classification for ISA types

¢ (# of memory operands, Max ALU operands)

Memory Ops Max ALU
per typical ALU operands Examples
instruction allowed
0 2 IBM RT-PC
3 SPARC, MIPS, HP-PA, PowerPC, ALPHA
1 2 PDP-10, M6800, IBM 360, Intel 90x86
3 IBM 360RS
2 2 PDP-11, National 32x32, IBM 360SS, VAX
3 NEC S1
3 3 VAX - blech!
School of Computing
W) university of Utah 1 cses10

(0,3) Reg-Reg: Pro’s and Con’s

* Pure RISC
= only load and store go to memory
* Advantages:
= simple fixed length instruction
» simplifies decode
= simple code generation
= simple cost model
» since CPI for instr

» exception Is load store
+ and in today’s high frequency world some things are a little more
iffy

will be |

* Disadvantages
= high IC & Imem footprint
= some instructions don’t need all of the instruction word bits
» < mem footprint

School of Computing

University of Utah CS6810

V)

(1,2)/(1,3) Reg-Mem P’s & C’s

* Evolved RISC and old CISC - go figure?
= some new RISC machines
» speculative loads
» predicated or deferred loads
* Pro’s
= no need to do a load before a use
= instruction format is still simple
= improved code density

* Con’s
= source operands are not equivalent In (1,2)
» 1reg value is destroyed with result value

» memory address fleld needs to be bigger than register fleld

» CPI varies for anything from y: cache, main, disk??
School of Computing
mj Unlversity of Utah 20 CS6810

Page 5

(3,3) mem-mem P’s and C’s

* Ultimate gaggy CISC
= extinct now and llkely to remaln that way
* Pro’s
= small instruction footprint?
» not clear given need for 3 large addresses
= doesn’t te a reglster for t h once data
» reglster flle consumes a lot of power 2 heat
e Con’s
= large variation in instruction size
= large varlation In CPI
» compller Just gives up
= high memory pressure
» yls ays the bottl
= slowest machine Imaginable

School of Computing
University of Utah

V)

21 CS86810

Memory Addressing

* Natural questions
= what is accessed: byte, word, multiple words??
» legacy today Is byte addressing which Is sllly
= disks, main Vs and the
» all organized with some “chunk” size In mind
+ caches have chunk = line
* memory & bus chunk matches lowest level cache line size
« disks dellver In page sized chunks
* Alignment problems are possible
= accessing a word or doubl icl
boundary
» requires 2 references rather than 1
» more CPl ambiguity
» bad Idea but guess who allows this?

y bus

b

cr a

School of Computing

University of Utah 22 Cs6810

U)

Words and byte order

¢ The Lilliputian Wars
= IEEE Computer article by Prof. James Finnegan
» O Unlv, O y KS
* Big vs. Little Endian
= Big Endian - byte 0 is the MSB
= Lil’ Endian - byte O is the LSB
¢ Is this a problem?

School of Computing

Unlversity of Utah 23 CS6810

V)

Words and byte order

¢ The Lilliputian Wars
= IEEE Computer article by Prof. James Finnegan
» O Unlv, O y KS
* Big vs. Little Endian
= Big Endian - byte 0 is the MSB
= Lil’ Endian - byte 0 is the LSB
¢ Is this a problem?
= yes - 1/O dellvers bytes In numerical order
¢ Today’s solution
= an Endian bit in a control register
= determines which side of words flll first (MSB vs. LSB)

School of Computing

Unlversity of Utah 24 CS6810

V)

Page 6

Processor Alignment Checks

Typical Address Modes |

« Common convention
= expect aligned data

= opcode determines what you load or store

» LDB - byte; LDW — word; etc.

= NOTE:

» we're In 64-bit processor land now but we define word = 32b
* Hardware checks for valid byte address based on load or

store type

= byte - any address is legal
= half word - address must have a low order bit = 0 else trap
= word - addr must have 2 low order bits = 0 else trap

= double - addr. must have 3 low order bits = 0 else trap

Mode Example Instruction Meaning Use
Register Add R4, R3 Regs[R4] <- Regs[R4] + AllRISC ALU operations
Regs|R3]
Immediate Add R4, #3 Regs[R4] <- Regs[R4] + 3 for small constants - prob-
lems?
Displacement Add R4, 100(R1) Regs[R4] <- Regs[Rd4] + accessing local variables

Mem[100 + Regs[R1]]

Register deferred or Indirect

Add R4, (R1)

RegsIR4] <- Regs[R4} +
Mem[Regs[R1]]

pointers.

Indexed

AddR3, (R1+R2)

Regs[R3] <-Regs [R3] +
Mem[Regs[R1] + Regs[R2]]

array access - R1is the
base, R2 is the index

Direct or absolute

AddR1, (1001)

Regs[R1] <- Regs[R1] +
Mem[1001]

problems?

U

School of Computing
University of Utah

25

Cs6810

W) Gniversity of Vtan

26

Cs6810

Typical Address Modes Il

Mode Mind Games

Mode

Example Instruction

Meaning

Use

Memory Indirect or
Memory Deferred

Add R1, @R3

Regs[R1] <-Regs[R1] +
Mem[Mem[Regs[3]1l

11 R3 holds a pointer
address, then result is the
full dereferenced pointer

in this case predecrement

Autoincrement AddR1, (R2) + Regs[R1] <-Regs[R1] + Array walks - if element of
in this case post increment Mem([Regs[R2]]; size dis accessed then
note symmetry with autodec Regs[R2] <-Regs[R2] +d | pointer increments auto
Autodecrement AddR1, - (R2) Regs[R2] <-Regs[R2] - d; array walks, with autoinc

Regs[R1] <-Regs[R1] +

useful for stack

Scaled

Add R1, 100 (R2) [R3]

Regs[R1] <-Regs[R1] +
Mem[100 + Regs[R2] +

array access - may be
applied to indexed

* Best way to understand utllity of addr. modes
= pick a few small loops from your own codes
= see what Instructions would be required using varlous

modes
» e.g. If you don’t have a mode then effective address will need
to require extra i i in your object code

= think about how you would encode the instruction set that
contalns what you llke

= do a block diagram of the effective

support your instruction set.
» often an Integer word add Is a good measure of what can be

1 clock cycle.

path that Id

» estimate how many cycles each address mode would require

= questions llke this tend to show up on the first mid-term

Regs[R3]* d] addressing in some
machines
d z:=size of an element
School of Computing
W) university of Utah 7 €s6810

mj School of Computing

Unlversity of Utah 28 CS6810

Mode Importance via benchmarks

based on a VAX which supported everything - SPEC89 codes

TeX
Memory indirect splos
goc

TeX
Scaled spioe
gec

TeX
Rgister indirect spice

TeX
Immediate spice

Tex
Displacement gpice

o 0% 20% 0% 4% 50% 0%
Frequency of the addressing mode

© 2003 Elsavier Sclence (USA). All Hights reserved.

!”J School of Computing

University of Utah 29 C86810

Address Field Size?

* Measure and optimize for the common case
= Analyze your programs

» get L or t
» want a broad Kk sp & op uns
* Choose

= displacement field size
= immediate or literal size
= address modes
= register flle size
¢ Then evaluate cost implications
= datapath 9 CPI and cycle time
= code denslty and Instruction decoding overhead
= ISA encoding overhead

School of Computing
!DJ University of Utah 30 Cs6810

Displacement Values

SPEC2000 based

§ §58 4§48

g
L
y

mm.".../\
LT [
Wﬂ

3

Do we need Immediate data?

School of Computing
mj Unlversity of Utah 3 CS6810

[Floating-point average
B Integer average

ALU operations 25%

All instructions

0% 5% 10% 15% 20% 25% 30%

® 2003 Elsevier Science (USA). All rights reserved.

School of Computing
mj Unlversity of Utah 32 CS6810

OK - what size immediate

o i
- I\
o~ /\Mwmnw
o L
e L
- L)
PRY N /)‘\‘S.)A IMW/
wl/ AN o
N s S

¢ 1 2 3 4 5 & 7 & 9 10 11 12 13 14 15
Number of bits needed for Immediate

SPEC2000 Operand Sizes

23%
ALU operations 25%

All instructions

15%

0% 5% 10% 25% 30%

® 2003 Elsevier Science (USA). All rights reserved.

@ Fleating-point average
oo Integer average

School of Computing

School of Computing
W) university of Utah 33 cses10 W) university of Utah 3 cseato
DSP Address Modes Media and Signal Processing
* Data is typically an infinite stream ¢ New data types
= h del yasa buffer = vertex
» ister holds a pointer to » 4 float vector: x, y, z, W
» 2 reglsters hold start and end points - pixel
» auto | t/d t + end detectl pixe! . .
« modulo or circular mode » 4 byte sized int’s: R, G, B, A (transparency)
* FFT is a common app. * New numeric types
= butterfly or shuffle is the common access stride = fixed point numbers between -1 and 1
» bit-reverse mode = all mantissa: fixed point between 0 and 1
» reverses n low order bits in the address * New operations
» n Is a parameter since It varles with FFT step = Inner product Is very common
¢ Importance: 54 DSP codes on a Tl C54x DSP proc. » fused instructions = MAC
=i diate, displ. t , reg. indirect, direct = 70% » usage: b = ax + previous b
= auto inc/dec = 20%
= all other modes collectively = 10%
School of Computing School of Computing . CS6810

35 CS6810

V)

University of Utah

V)

University of Utah

Page 9

The Ubiquitous x86

Summary

Double word
(64 bits)

Word

(32 bits)
Half word
(16 bits)

Byte
(8 bits)

70%

M Floating-point average
O Integer average

40% 60% 80%

® 2003 Elsavier Science (USA). All rights reserved.

* Simple is good
= compilers 2 better code generation and optimization
quality
= machine 2 speed
¢ Beware the 90-10 rule though
= 10% of the static instructions take 90% of the time
» must use dynamic countsi/traces
¢ Can we punt on complex Instructions?
= depends on performance
» the 10% can get arblitrarily bad
= depends on cost
» some new types, modes, etc. are almost free
= or sadly
» some idiot just

School of Computing

University of Utah C86810

V)

37

School of Computing

University of Utah Cs6810

38

U)

Page 10

