Quantitative Analysis

Today’s topics:
failure analysis
*performance analysis
*some basic quantitative principles

«caution - pot holes - it’s easy to lie w/
numbers
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Some Issues So Far

¢ And it’s only the 2" Class
* You’ll note my preference
= conceptual stuff In the lectures
= practical stuff In the homeworks
» give me feedback when this approach isn’t good enough
¢ Text Isn’t In the bookstore
= major screw-up
» due to late ¢ hil i t ch

» order It on-line
« itll be faster and cheaper

 Homework #1 will be on the web later today
= make sure you start early

holid L A ahaad

» maybe you’d like to enjoy It
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Reliability

* Rellabllity Is a key concern In some segments
= mission critical embedded systems
» e.g. power plant: 1t tl
= when high availability is needed
» either due to tary loss or
* SLA’s and SLO’s
* Weakest link theory
= useful acronyms (note these are averages & “user mileage
may vary”)
» MTTF - mean time to fallure
» MTTR - mean time to repalr
» MTBF (B=between) = MTTF + MTTR
» avallabllity = MTTF/MTBF

, aero & space, ...

= hook?
» for a dule - more for a larger system
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Failure Mechanisms

* 2 types
= hard - permanent failure
= translent - temporary fallure
» due to environmental Issues
« alpha particles, heat, cross-talk, noise, vibration, ...
* Device speclific (small set of examples)
= IC’s

» transistors can fall due to excess heat & current
. i in

» wires fall due to excess current — “metal migration”
= Disks (checkout r t Google paper on this)
» MHD’s: oxide , head , coll: t
accuracy
» $8D's: block erase oxide thinning
= DRAM’s (checkout recent Google paper on this tool)
» IC’s but alpha particles disrupt stored charge
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Improving Reliability

* 2 strategies
= build more reliable devices
» more costly & a very slippery slope
= use more of them - redundancy
* Redundancy shows up In lots of costumes
= extra bits - CRC & ECC codes
» even more exotic: Turbo, Viterbi, etc.
= extra gates and wires
» seldom used today
= redundant blocks
» 2: compare and signal error If they don’t agree
» some odd number: vote and take majority, flag anyway
= redundant everything
» retry elsewhere if something fails

Performance

* 2 aspects

= throughput: rate of completion of multiple jobs, processes,
or threads

= single thread performance or execution time
= making one better usually degrades the other

 Comparing: performance = 1/execution_time
Execution Time Y
Exccution Time X

= similar game for throughput comparisons

= hybrid
» e.g. NAND Flash — ECC on block, q block befi thing
get nasty
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Measuring Performance Tools
* Tricky In today’s multiprocessing world ¢ Unix time command
= alias factors = oth> time
» time (stop ) Is load » 0.898u 0.311s 2:39.79 0.7% 0+0k 0+0lo 9pf+02
» context switch = meaning
« process Is swapped out part of the time It’s supposedly running »us ds of user p i time
» page faults »s= ds of sy tion time (0S)
+ only falr if your workioad Is the only one running » 2:39.79 minutes of elapsed time
» /O delays

* processing may be dwarfed by slow 1/O response time
» OS8 overheads
« fair if OS service is important part of your workload
+ unfalr If service to other workloads are ohserved
* Fortunately
= tools exist to help break out time into different bins
» still some cruft gets swept under the rug
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+ Includes page faults, 1/0 overhead, etc. (a.k-a. external overheads)
» k = KB of text + data used
» lo = amount of Vo sent
» pf: major plus minor page faults
* major: page was on disk
* minor: TLB miss but page In maln-memory (DRAM)
= Beware: OS “system time” undervalued

» call and retumn link harged to user time

« Higher fidelity
= use on chip counters via some tool like Intel’s vTune
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Lots of Performance Analysis Tools

* Key is to learn what they’re good at
= some are good at

Evaluating Machines

* Which programs do you choose?
= real programs

» tracking certaln HW - cache ml TLB mil. IPC » Ideal but problematic
» g phase * you can’t Just read about them
« aggregate finer detalls Into a larger “average” * I's a lot of work
« Point + what you care about may be diverse and change over time
« use the right tool for the job : k’»"'“" n leces of your
= seems obvious but often users don’t get it . same pmbl.“'l as above PLUS your prog
« Some thinss are very hard - you have to profile your code to find the right stuff
R - b frect” - Intultion of where the time goes Is suspect
each tool has a “probe effec: « use existing kemels
» often hard to determine the overhead - @.g- Livermore Loops & Linpack
« partially it may be i i - small loops over big data sets
- good chance they don’t represent your computational needs
- not real programs anyway
- Just stress the CPU
¢ What would you do?
= without looking at the next slidel
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Benchmarks More Benchmarks
¢ Industry standard reporting mechanism ¢ TPC: http://www.tcp.org
= burden = ¢ tion pr ing servers (like Google)
» need to what the » heavy on /O - light on p
« Int, float, cache, mal Y, Int ty me » examples
» enormous diversity in today’s benchmarks + TPC-A: simple bank teller transactions
* Common benchmark suites * TPC-C: compex database query
- heavy memory and disk usage
= SPEC: http:/www.spec.o nchmarks.html * TPC-H: decislon support
» set for / gl t - lots of data but what does It mean
* both Int and fp codes * TPC-W: web server
» extenslons: OpenMP, MPI, graphics
= PARSEC: http://parsec.cs.princeton.edu/overview.htm
» new sulte almed at multl-core processor evaluation
= EEMBC: http:/eembc.org/benchmark/index.php
» diverse sulte almed at embedded systems
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Benchmark Issues

* Reproducibility
= a must - hence test jig is specified
* Source code modifications
= SPEC - not allowed
= TPC - allowed but too difficult to be probable
= Linpack & Livermore Loops - allowed
= EEMBC - even all hand bly coding
¢ Various cheating mechanisms
= piler r ghi: b F rk and emits hand coded .asm
= allow programming practice to evolve
» particularly true for newer architectures
* e.g. multi{thread/corel...)
= tough line to walk
* Key (worth repeating)
* Know what each b

rk is really ing

Trusting Reported Performance

* Depends - initially be skeptical
= need
» precl hi tion and test setup
= things are actually pretty good today
= some venues are better than others
» Microprocessor Forum - highly rellable
» Internet - It’s a crap shoot
» popular press
+ keoy is to figure out what their source is
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Usually care about more than 1 program Aggregation Options
* Example ¢ Arithmetic Mean
e Arithmetic Mean - simple
average
Machine A Machine B Machine C | n
Program 1 (secs) 1 10 20 p limei
Program 2 (secs) 1000 100 20 =
Total Time (secs) 1001 110 40 _ doesn’t account for
weight/importance
e Weighted AM
Which is better and by how much? g "
> Weighti x Timei
i=1
— better but beware the dominant
program time
School of Computing 15 CS6810 mj School of Computing 16 CS6810

V)

University of Utah

University of Utah

Page 4




Using Rate/Throughput

* Harmonic Mean

e Harmonic mean

o Weighted HM

n

n 7 n
¥ Weighti
. Ratei
i=1
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Dealing with large time variations

* Geometric Mean
e Geometric Mean

n
n| [1 Execution Time Ratioi
i=1

e Properties
— ratio of the means = mean of the ratios
— no dominance of longest run time in the result
— probably better than AM or HM
— weighted variant also possible
» probably the best of all IF you can assign the weights properly
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General Principles

* Make the common case fast
= you just need to figure out what it is
= easy to say hard to do
» HW - fast, SW >slow, hence
* HW support for common case but it’s inflexible
+ SW support for flexibliity
= some issues are simple
» exceptions are rare - handle It software
* but recognize It w/ HW support
* Whatever you do it has to work
= reliably and within a cost parameter that the market will
bear
» note academics often are unconcerned with this
+ short lived companles may be In the same boat
» for industry
+ everything matters since you have to bulld the whole system
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Amdahl’s Law

e Speedup of a particular feature
— XEQ-time = 1/performance so other variants are possible

Execution time without using the enhancement

Speedup = — -
peedtl Execution time using the enhancement

e Amdahl’s law
— quantifying the commonality factor

Speedupo‘ve].a“ = Fraction
4 enhanced

(1-Fraction 3
enhanced” Speedup

enhanced

— beware: Amdahl’s law says nothing about cost
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Simple Example

¢ 3 instructions considered key enhancements for
graphics
= FP instructions (except FPSQRT) 50% of dynamic count
= FPSQRT 20%
= all other instructions 30%
* Designers say: “for the same cost/area we can speed up
= FP by 2x
= FPSQRT by 40x
= all others by 8x
¢ Trick - in this case you only get to pick one
= what’s your guess
» numbers next but what is your intuition?
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Answer

e FPSQRT
L = Speedup =—1 - 1.242
=X FPSORT ~ = LM2
o F""""“enhnnced AL (1-02) *E
(1- }m“mn»nham‘kd )+ T — 40
PPy hanced
e FP 1
SpeedupFP s m =1.333
—0.5 3
e Other
S - s
Spe cd“p()(her 3 1.356
(1-03)+—
8
Biggest enhancement is the loser as is the most frequent!!
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Calculating Performance

¢ Simple view

CPU time = CPU cycles for a program x Clock Cycle Time

CPU cycles for a program

(ST Clock Rate

= what’s wrong with this?
» frequency = 1/cycle-time
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Easier to count instructions

* Dynamlic count Is what you need

= static count - footprint
In the

» not a big deal these days P
* Problem
= not all instructions take the same number of cycles
» we’ll see why later
» e.g. FPDIV Is way more work than a shift-left 4-bits
* 2 new terms
= IC=dy Ic Instr
= CPI = cycles per instruction
» today IPC is used due to multi-issue architectures
« IPC = 1/CPI
* For a given workload
= IPC is a figure of merit

P "

1C x CPI

"PU time = 1C % C| “vele Time =
CPU time = 1Cx CPI X Cycle Time Clock Rate

School of Computing

University of Utah 24

V)

CS6810

Page 6




IC, IPC, Cycle-Time Influences

* IC
= depends on the instruction set & compiler
» ADD vs. DFT as a sllly example
* IPC
= depends on ISA and machine architecture
* Frequency
= depends on the pipeline depth
» more soon on this but too deep has it’s issues
» too shallow too little parallelism
* Conflicting constraints
= improving on one is easy
» without making the others worse Is hard
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Other Factors

¢ It’s not all about performance
= even though a lot of our focus in 6810 is centered here
* Cost
= performance/$
» 800 some examples in your text
= TCO - total cost of ownership
» e.g. how reliable and how long does it last
= upgrades, SW, peripherals, ..., long list
» processor may be a small plece of the whole system
= ease of use if your time is worth anything
* Power
= Important when you’re not plugged In
= too hot > more expensive cooling required
» 80 power costs more than just on your electric bill

School of Computing

University of Utah 26 Cs6810

U)

Page 7




