
Page 1

1 CS6810
School of Computing
University of Utah

Quantitative Analysis

 Today’s topics:

• failure analysis

• performance analysis

• some basic quantitative principles

• caution – pot holes – it’s easy to lie w/
 numbers

2 CS6810
School of Computing
University of Utah

Some Issues So Far

•  And it’s only the 2nd Class

•  You’ll note my preference
  conceptual stuff in the lectures

  practical stuff in the homeworks
»  give me feedback when this approach isn’t good enough

•  Text isn’t in the bookstore
  major screw-up

»  due to late teaching assignment change

»  order it on-line
•  it’ll be faster and cheaper

•  Homework #1 will be on the web later today
  make sure you start early

  holiday weekend ahead
»  maybe you’d like to enjoy it

3 CS6810
School of Computing
University of Utah

Reliability

•  Reliability is a key concern in some segments
  mission critical embedded systems

»  e.g. nuclear power plants, automotive, aero & space, …

  when high availability is needed
»  either due to monetary loss or contract

•  SLA’s and SLO’s

•  Weakest link theory
  useful acronyms (note these are averages & “user mileage

 may vary”)
»  MTTF – mean time to failure

»  MTTR – mean time to repair

»  MTBF (B=between) = MTTF + MTTR

»  availability = MTTF/MTBF

  hook?
»  simple for a module – more complex for a larger system

4 CS6810
School of Computing
University of Utah

Failure Mechanisms

•  2 types
  hard – permanent failure

  transient – temporary failure
»  due to environmental issues

•  alpha particles, heat, cross-talk, noise, vibration, …

•  Device specific (small set of examples)
  IC’s

»  transistors can fail due to excess heat & current
•  extremely reliable in general

»  wires fail due to excess current – “metal migration”

  Disks (checkout recent Google paper on this)
»  MHD’s: oxide deterioration, head saturation, coil-motor

 accuracy

»  SSD’s: block erase oxide thinning

  DRAM’s (checkout recent Google paper on this too!)
»  IC’s but alpha particles disrupt stored charge

Page 2

5 CS6810
School of Computing
University of Utah

Improving Reliability

•  2 strategies
  build more reliable devices

»  more costly & a very slippery slope

  use more of them  redundancy

•  Redundancy shows up in lots of costumes
  extra bits – CRC & ECC codes

»  even more exotic: Turbo, Viterbi, etc.

  extra gates and wires
»  seldom used today

  redundant blocks
»  2: compare and signal error if they don’t agree

»  some odd number: vote and take majority, flag anyway

  redundant everything
»  retry elsewhere if something fails

  hybrid
»  e.g. NAND Flash – ECC on block, quarantine block before things

 get nasty

6 CS6810
School of Computing
University of Utah

Performance

•  2 aspects
  throughput: rate of completion of multiple jobs, processes,

 or threads

  single thread performance or execution time
  making one better usually degrades the other

•  Comparing: performance = 1/execution_time

  similar game for throughput comparisons

7 CS6810
School of Computing
University of Utah

Measuring Performance

•  Tricky in today’s multiprocessing world
  alias factors

»  elapsed time (stopwatch) is load dependent

»  context switch
•  process is swapped out part of the time it’s supposedly running

»  page faults
•  only fair if your workload is the only one running

»  I/O delays
•  processing may be dwarfed by slow I/O response time

»  OS overheads
•  fair if OS service is important part of your workload

•  unfair if service to other workloads are observed

•  Fortunately
  tools exist to help break out time into different bins

»  still some cruft gets swept under the rug

8 CS6810
School of Computing
University of Utah

Tools

•  Unix time command
  otb> time

»  0.898u 0.311s 2:39.79 0.7% 0+0k 0+0io 9pf+02

  meaning
»  u = seconds of user process execution time

»  s = seconds of system execution time (OS)

»  2:39.79 minutes of elapsed time
•  includes page faults, I/O overhead, etc. (a.k.a. external overheads)

»  k = KB of text + data used

»  io = amount of i/o sent

»  pf: major plus minor page faults
•  major: page was on disk

•  minor: TLB miss but page in main-memory (DRAM)

  Beware: OS “system time” undervalued
»  call and return linkages usually charged to user time

•  Higher fidelity
  use on chip counters via some tool like Intel’s vTune

Page 3

9 CS6810
School of Computing
University of Utah

Lots of Performance Analysis Tools

•  Key is to learn what they’re good at
  some are good at

»  tracking certain HW events – cache misses, TLB misses, IPC

»  course grained phase changes
•  aggregate finer details into a larger “average”

•  Point
  use the right tool for the job
  seems obvious but often users don’t get it

•  Some things are very hard
  each tool has a “probe effect”

»  often hard to determine the overhead
•  partially because it may be inconsistent

10 CS6810
School of Computing
University of Utah

Evaluating Machines

•  Which programs do you choose?
  real programs

»  ideal but problematic
•  you can’t just read about them

•  it’s a lot of work

•  what you care about may be diverse and change over time

  kernels
»  computationally intensive pieces of your programs

•  same problem as above PLUS
–  you have to profile your code to find the right stuff

–  intuition of where the time goes is suspect

•  use existing kernels
–  e.g. Livermore Loops & Linpack

–  small loops over big data sets

–  good chance they don’t represent your computational needs

–  not real programs anyway

–  just stress the CPU

•  What would you do?
  without looking at the next slide!

11 CS6810
School of Computing
University of Utah

Benchmarks

•  Industry standard reporting mechanism
  burden

»  need to understand what the benchmark measures
•  int, float, cache, main-memory, interconnect, ….

»  enormous diversity in today’s benchmarks

•  Common benchmark suites
  SPEC: http://www.spec.org/benchmarks.html

»  standard set for desktop/laptop segment
•  both int and fp codes

»  extensions: OpenMP, MPI, graphics

  PARSEC: http://parsec.cs.princeton.edu/overview.htm
»  new suite aimed at multi-core processor evaluation

  EEMBC: http://eembc.org/benchmark/index.php
»  diverse suite aimed at embedded systems

•  telecom, automotive, networking, multicore, …

12 CS6810
School of Computing
University of Utah

More Benchmarks

•  TPC: http://www.tcp.org
  transaction processing servers (like Google)

»  heavy on I/O – somewhat light on processing

»  examples
•  TPC-A: simple bank teller transactions

•  TPC-C: compex database query
–  heavy memory and disk usage

•  TPC-H: decision support
–  lots of data but what does it mean

•  TPC-W: web server

Page 4

13 CS6810
School of Computing
University of Utah

Benchmark Issues

•  Reproducibility
  a must – hence test jig is specified

•  Source code modifications
  SPEC – not allowed

  TPC – allowed but too difficult to be probable

  Linpack & Livermore Loops – allowed

  EEMBC – even allows hand assembly coding

•  Various cheating mechanisms
  compiler recognizes benchmark and emits hand coded .asm

  allow programming practice to evolve
»  particularly true for newer architectures

•  e.g. multi-(thread/core/…)

  tough line to walk

•  Key (worth repeating)
  Know what each benchmark is really measuring

14 CS6810
School of Computing
University of Utah

Trusting Reported Performance

•  Depends – initially be skeptical
  need

»  precise machine configuration and test setup

  things are actually pretty good today
  some venues are better than others

»  Microprocessor Forum – highly reliable

»  Internet – it’s a crap shoot

»  popular press
•  key is to figure out what their source is

15 CS6810
School of Computing
University of Utah

Usually care about more than 1 program

•  Example

Which is better and by how much?

16 CS6810
School of Computing
University of Utah

Aggregation Options

•  Arithmetic Mean

Page 5

17 CS6810
School of Computing
University of Utah

Using Rate/Throughput

•  Harmonic Mean

18 CS6810
School of Computing
University of Utah

Dealing with large time variations

•  Geometric Mean

19 CS6810
School of Computing
University of Utah

General Principles

•  Make the common case fast
  you just need to figure out what it is

  easy to say hard to do
»  HW  fast, SW slow, hence

•  HW support for common case but it’s inflexible

•  SW support for flexibility

  some issues are simple
»  exceptions are rare  handle it software

•  but recognize it w/ HW support

•  Whatever you do it has to work
  reliably and within a cost parameter that the market will

 bear
»  note academics often are unconcerned with this

•  short lived companies may be in the same boat

»  for industry
•  everything matters since you have to build the whole system

20 CS6810
School of Computing
University of Utah

Amdahl’s Law

Page 6

21 CS6810
School of Computing
University of Utah

Simple Example

•  3 instructions considered key enhancements for
 graphics
  FP instructions (except FPSQRT) 50% of dynamic count

  FPSQRT 20%

  all other instructions 30%

•  Designers say: “for the same cost/area we can speed up
  FP by 2x

  FPSQRT by 40x

  all others by 8x

•  Trick – in this case you only get to pick one
  what’s your guess

»  numbers next but what is your intuition?

22 CS6810
School of Computing
University of Utah

Answer

23 CS6810
School of Computing
University of Utah

Calculating Performance

•  Simple view

  what’s wrong with this?
»  frequency = 1/cycle-time

24 CS6810
School of Computing
University of Utah

Easier to count instructions

•  Dynamic count is what you need
  static count  footprint

»  not a big deal these days except in the embedded segment

•  Problem
  not all instructions take the same number of cycles

»  we’ll see why later

»  e.g. FPDIV is way more work than a shift-left 4-bits

•  2 new terms
  IC = dynamic instruction count

  CPI = cycles per instruction
»  today IPC is used due to multi-issue architectures

•  IPC = 1/CPI

•  For a given workload
  IPC is a figure of merit

Page 7

25 CS6810
School of Computing
University of Utah

IC, IPC, Cycle-Time Influences

•  IC
  depends on the instruction set & compiler

»  ADD vs. DFT as a silly example

•  IPC
  depends on ISA and machine architecture

•  Frequency
  depends on the pipeline depth

»  more soon on this but too deep has it’s issues

»  too shallow too little parallelism

•  Conflicting constraints
  improving on one is easy

»  without making the others worse is hard

26 CS6810
School of Computing
University of Utah

Other Factors

•  It’s not all about performance
  even though a lot of our focus in 6810 is centered here

•  Cost
  performance/$

»  see some examples in your text

  TCO – total cost of ownership
»  e.g. how reliable and how long does it last

  upgrades, SW, peripherals, …, long list
»  processor may be a small piece of the whole system

  ease of use if your time is worth anything

•  Power
  important when you’re not plugged in

  too hot  more expensive cooling required
»  so power costs more than just on your electric bill

