Quantitative Analysis

Today’s topics:
failure analysis
*performance analysis
*some basic quantitative principles

«caution - pot holes - it’s easy to lie w/
numbers

School of Computing

University of Utah 1 C86810

V)

Some Issues So Far

¢ And it’s only the 2" Class
* You’ll note my preference
= conceptual stuff In the lectures
= practical stuff In the homeworks
» give me feedback when this approach isn’t good enough
¢ Text Isn’t In the bookstore
= major screw-up
» due to late ¢ hil i t ch

» order It on-line
« itll be faster and cheaper

 Homework #1 will be on the web later today
= make sure you start early

holid L A ahaad

» maybe you’d like to enjoy It

School of Computing

University of Utah 2 Cs6810

U)

Reliability

* Rellabllity Is a key concern In some segments
= mission critical embedded systems
» e.g. power plant: 1t tl
= when high availability is needed
» either due to tary loss or
* SLA’s and SLO’s
* Weakest link theory
= useful acronyms (note these are averages & “user mileage
may vary”)
» MTTF - mean time to fallure
» MTTR - mean time to repalr
» MTBF (B=between) = MTTF + MTTR
» avallabllity = MTTF/MTBF

, aero & space, ...

= hook?
» for a dule - more for a larger system
School of Computing
mj Unlversity of Utah 3 CS6810

Failure Mechanisms

* 2 types
= hard - permanent failure
= translent - temporary fallure
» due to environmental Issues
« alpha particles, heat, cross-talk, noise, vibration, ...
* Device speclific (small set of examples)
= IC’s

» transistors can fall due to excess heat & current
. i in

» wires fall due to excess current — “metal migration”
= Disks (checkout r t Google paper on this)
» MHD’s: oxide , head , coll: t
accuracy
» $8D's: block erase oxide thinning
= DRAM’s (checkout recent Google paper on this tool)
» IC’s but alpha particles disrupt stored charge

School of Computing

Unlversity of Utah 4 CS6810

V)

Page 1

Improving Reliability

* 2 strategies
= build more reliable devices
» more costly & a very slippery slope
= use more of them - redundancy
* Redundancy shows up In lots of costumes
= extra bits - CRC & ECC codes
» even more exotic: Turbo, Viterbi, etc.
= extra gates and wires
» seldom used today
= redundant blocks
» 2: compare and signal error If they don’t agree
» some odd number: vote and take majority, flag anyway
= redundant everything
» retry elsewhere if something fails

Performance

* 2 aspects

= throughput: rate of completion of multiple jobs, processes,
or threads

= single thread performance or execution time
= making one better usually degrades the other

 Comparing: performance = 1/execution_time
Execution Time Y
Exccution Time X

= similar game for throughput comparisons

= hybrid
» e.g. NAND Flash — ECC on block, q block befi thing
get nasty
School of Computing School of Computing
W) university of Utah s csee10 W) university of tah © €s6810
Measuring Performance Tools
* Tricky In today’s multiprocessing world ¢ Unix time command
= alias factors = oth> time
» time (stop) Is load » 0.898u 0.311s 2:39.79 0.7% 0+0k 0+0lo 9pf+02
» context switch = meaning
« process Is swapped out part of the time It’s supposedly running »us ds of user p i time
» page faults »s= ds of sy tion time (0S)
+ only falr if your workioad Is the only one running » 2:39.79 minutes of elapsed time
» /O delays

* processing may be dwarfed by slow 1/O response time
» OS8 overheads
« fair if OS service is important part of your workload
+ unfalr If service to other workloads are ohserved
* Fortunately
= tools exist to help break out time into different bins
» still some cruft gets swept under the rug

School of Computing

University of Utah 7 CS6810

V)

+ Includes page faults, 1/0 overhead, etc. (a.k-a. external overheads)
» k = KB of text + data used
» lo = amount of Vo sent
» pf: major plus minor page faults
* major: page was on disk
* minor: TLB miss but page In maln-memory (DRAM)
= Beware: OS “system time” undervalued

» call and retumn link harged to user time

« Higher fidelity
= use on chip counters via some tool like Intel’s vTune

School of Computing

Unlversity of Utah 8 CS6810

V)

Page 2

Lots of Performance Analysis Tools

* Key is to learn what they’re good at
= some are good at

Evaluating Machines

* Which programs do you choose?
= real programs

» tracking certaln HW - cache ml TLB mil. IPC » Ideal but problematic
» g phase * you can’t Just read about them
« aggregate finer detalls Into a larger “average” * I's a lot of work
« Point + what you care about may be diverse and change over time
« use the right tool for the job : k’»"'“" n leces of your
= seems obvious but often users don’t get it . same pmbl.“'l as above PLUS your prog
« Some thinss are very hard - you have to profile your code to find the right stuff
R - b frect” - Intultion of where the time goes Is suspect
each tool has a “probe effec: « use existing kemels
» often hard to determine the overhead - @.g- Livermore Loops & Linpack
« partially it may be i i - small loops over big data sets
- good chance they don’t represent your computational needs
- not real programs anyway
- Just stress the CPU
¢ What would you do?
= without looking at the next slidel
School of Computing School of Computing
W) university of Utah ° csee10 W) university of tah 1 €s6810
Benchmarks More Benchmarks
¢ Industry standard reporting mechanism ¢ TPC: http://www.tcp.org
= burden = ¢ tion pr ing servers (like Google)
» need to what the » heavy on /O - light on p
« Int, float, cache, mal Y, Int ty me » examples
» enormous diversity in today’s benchmarks + TPC-A: simple bank teller transactions
* Common benchmark suites * TPC-C: compex database query
- heavy memory and disk usage
= SPEC: http:/www.spec.o nchmarks.html * TPC-H: decislon support
» set for / gl t - lots of data but what does It mean
* both Int and fp codes * TPC-W: web server
» extenslons: OpenMP, MPI, graphics
= PARSEC: http://parsec.cs.princeton.edu/overview.htm
» new sulte almed at multl-core processor evaluation
= EEMBC: http:/eembc.org/benchmark/index.php
» diverse sulte almed at embedded systems
School of Computing School of Computing
()] University of Utah 1 €S6810 ()] University of Utah 12 €S6810

Page 3

Benchmark Issues

* Reproducibility
= a must - hence test jig is specified
* Source code modifications
= SPEC - not allowed
= TPC - allowed but too difficult to be probable
= Linpack & Livermore Loops - allowed
= EEMBC - even all hand bly coding
¢ Various cheating mechanisms
= piler r ghi: b F rk and emits hand coded .asm
= allow programming practice to evolve
» particularly true for newer architectures
* e.g. multi{thread/corel...)
= tough line to walk
* Key (worth repeating)
* Know what each b

rk is really ing

Trusting Reported Performance

* Depends - initially be skeptical
= need
» precl hi tion and test setup
= things are actually pretty good today
= some venues are better than others
» Microprocessor Forum - highly rellable
» Internet - It’s a crap shoot
» popular press
+ keoy is to figure out what their source is

School of Computing

School of Computing
W) university of Utah 13 cses10 W) university of Utah 14 cs6810
Usually care about more than 1 program Aggregation Options
* Example ¢ Arithmetic Mean
e Arithmetic Mean - simple
average
Machine A Machine B Machine C | n
Program 1 (secs) 1 10 20 p limei
Program 2 (secs) 1000 100 20 =
Total Time (secs) 1001 110 40 _ doesn’t account for
weight/importance
e Weighted AM
Which is better and by how much? g "
> Weighti x Timei
i=1
— better but beware the dominant
program time
School of Computing 15 CS6810 mj School of Computing 16 CS6810

V)

University of Utah

University of Utah

Page 4

Using Rate/Throughput

* Harmonic Mean

e Harmonic mean

o Weighted HM

n

n 7 n
¥ Weighti
. Ratei
i=1

School of Computing

University of Utah 7 C86810

V)

Dealing with large time variations

* Geometric Mean
e Geometric Mean

n
n| [1 Execution Time Ratioi
i=1

e Properties
— ratio of the means = mean of the ratios
— no dominance of longest run time in the result
— probably better than AM or HM
— weighted variant also possible
» probably the best of all IF you can assign the weights properly

School of Computing

University of Utah 18 Cs6810

U)

General Principles

* Make the common case fast
= you just need to figure out what it is
= easy to say hard to do
» HW - fast, SW >slow, hence
* HW support for common case but it’s inflexible
+ SW support for flexibliity
= some issues are simple
» exceptions are rare - handle It software
* but recognize It w/ HW support
* Whatever you do it has to work
= reliably and within a cost parameter that the market will
bear
» note academics often are unconcerned with this
+ short lived companles may be In the same boat
» for industry
+ everything matters since you have to bulld the whole system

School of Computing

Unlversity of Utah 19 CS6810

V)

Amdahl’s Law

e Speedup of a particular feature
— XEQ-time = 1/performance so other variants are possible

Execution time without using the enhancement

Speedup = — -
peedtl Execution time using the enhancement

e Amdahl’s law
— quantifying the commonality factor

Speedupo‘ve].a“ = Fraction
4 enhanced

(1-Fraction 3
enhanced” Speedup

enhanced

— beware: Amdahl’s law says nothing about cost

School of Computing

Unlversity of Utah 20 CS6810

V)

Page 5

Simple Example

¢ 3 instructions considered key enhancements for
graphics
= FP instructions (except FPSQRT) 50% of dynamic count
= FPSQRT 20%
= all other instructions 30%
* Designers say: “for the same cost/area we can speed up
= FP by 2x
= FPSQRT by 40x
= all others by 8x
¢ Trick - in this case you only get to pick one
= what’s your guess
» numbers next but what is your intuition?

School of Computing

University of Utah C86810

21

V)

Answer

e FPSQRT
L = Speedup =—1 - 1.242
=X FPSORT ~ = LM2
o F""""“enhnnced AL (1-02) *E
(1- }m“mn»nham‘kd)+ T — 40
PPy hanced
e FP 1
SpeedupFP s m =1.333
—0.5 3
e Other
S - s
Spe cd“p()(her 3 1.356
(1-03)+—
8
Biggest enhancement is the loser as is the most frequent!!
School of Computing
W) university of Utah 22 cses10

Calculating Performance

¢ Simple view

CPU time = CPU cycles for a program x Clock Cycle Time

CPU cycles for a program

(ST Clock Rate

= what’s wrong with this?
» frequency = 1/cycle-time

School of Computing

University of Utah CS6810

23

V)

Easier to count instructions

* Dynamlic count Is what you need

= static count - footprint
In the

» not a big deal these days P
* Problem
= not all instructions take the same number of cycles
» we’ll see why later
» e.g. FPDIV Is way more work than a shift-left 4-bits
* 2 new terms
= IC=dy Ic Instr
= CPI = cycles per instruction
» today IPC is used due to multi-issue architectures
« IPC = 1/CPI
* For a given workload
= IPC is a figure of merit

P "

1C x CPI

"PU time = 1C % C| “vele Time =
CPU time = 1Cx CPI X Cycle Time Clock Rate

School of Computing

University of Utah 24

V)

CS6810

Page 6

IC, IPC, Cycle-Time Influences

* IC
= depends on the instruction set & compiler
» ADD vs. DFT as a sllly example
* IPC
= depends on ISA and machine architecture
* Frequency
= depends on the pipeline depth
» more soon on this but too deep has it’s issues
» too shallow too little parallelism
* Conflicting constraints
= improving on one is easy
» without making the others worse Is hard

School of Computing
University of Utah

V)

25

Cs6810

Other Factors

¢ It’s not all about performance
= even though a lot of our focus in 6810 is centered here
* Cost
= performance/$
» 800 some examples in your text
= TCO - total cost of ownership
» e.g. how reliable and how long does it last
= upgrades, SW, peripherals, ..., long list
» processor may be a small plece of the whole system
= ease of use if your time is worth anything
* Power
= Important when you’re not plugged In
= too hot > more expensive cooling required
» 80 power costs more than just on your electric bill

School of Computing

University of Utah 26 Cs6810

U)

Page 7

