DISKS & Storage

Today's topics:

- Faults & RAS
- RAID models
- Some underlying disk technology

very brief - more complicated than you might guess
more depth will appear in CS7810

Reliability

- RAS
 - reliability - absence of observable faults (hard, soft, human)
 » redundancy is always the key here
 - availability - system level concept
 » does it still supply the service
 » how much degradation under certain fault models
 - serviceability
 » can system be repaired while it's running
 • lots of engineering issues to enable hot-swap

Faults

- Categories
 - HW
 • did something break
 • several types: wire, component, connector, power supply, cooling, ...
 - design
 • bug in either software or hardware
 • check known errors in any current uP
 • software workarounds are key until next fab run
 - operational
 • most common: screw up by operations/maintenance staff
 - environmental
 • power or network loss, fire, flood, sabotage, ...

Fault Types

- Transient
 - non-recurring
 • causes
 • environmental noise event - lightning
 • alpha particle strike
 • basically impossible to find so you need to compensate by design
 • parity, CRC, ... reboot
 - intermittent
 • recurring but somewhat rare
 • cross-talk
 • transistor malfunction at a certain temp that is rare
 • again compensate by design
 - permanent
 • something just breaks and stays broken
 • finding these are typically easy
 • compensate & service to meet RAS target
Failure Reality

- System is what we care about
 - sum of it's components – weakest link theory applies
 - N components fail N times more often
 - think early multi-engine airplanes
 - today small number of components have increased system reliability
 - somewhat surprising IC property
 - IC failure rate has remained fairly flat
 - even w/ Moore's law growth of transistors
 - we are likely entering a different era
 - how to build reliable systems from flakey components?
 - hot current research topic

• Metrics

\[
\text{ModuleAvailability} = \frac{\text{MTTF}}{\text{MTTF + MTTR}}
\]

FIT Metric

- 1 FIT = 1 failure in 10^9 hours
 - FIT := failure in time (billion hours)
 - billion hours = 114,155 years
 - 3-5 year expected lifetime
 - need ~10^5 FIT reliability

- \text{MTTF} = \text{MTBF}
 - calculating MTBF
 - \(\sum_{i=1}^{n} q_i \times r_i \)
 - \(n \) is the total number of components
 - \(q_i \) is the quantity of the \(i \)th component
 - \(r_i \) is FIT rate of \(i \)th component

Improving Reliability

- Make better parts
 - doable in some cases & huge cost adder
- Use less parts
 - natural consequence of higher levels of integration
- Employ redundancy
 - common choice
 - 2x – OK as long as we agree
 - 3x – vote and 1 can fail
 - Nn – vote and (N/2)-1 can fail
 - duplicate what?
 - bits, components, wires, gates, ...
 - huge choice set
 - bits and components are common choices today
 - wires and gates may be in our future
 - if intra-IC defects become flakey
- Bottom line – Pandora’s box just opened
 - Dan Siewiorek’s book is an excellent reference text

Failure Model

- No design makes sense without a reasonable failure model
 - amazing how many times this mistake is made
 - how reliable does your system have to be & what are the consequences of failure
 - note difference between PC and nuclear power plant monitors
 - characterize your components
 - MTBF equation comes into play
- Examples
 - transistors and wires fail on a chip
 - highly localized
 - noise → burst errors in transmission
 - disk → oxide deterioration affects an area
 - area likely to expand over time
Reliability, Disks, and Modern Systems

• Think selfishly
 • what would be a bigger disaster
 » losing your files
 » losing your PC
 • If they are the same, you really should fix this YESTERDAY

• The point
 • we view disk storage as archival in most cases
 • backups are increasingly on disk
 » commercial archives are often tape based for "old stuff"
 » cheaper but pain in the tuckus to retrieve from the cave
 • checkpoints are always on disk
 • NVRAM option may be cost effective in the future
 » more on this next lecture
• So let’s look at disk reliability
 • and then a brief glance at the underlying technology

RAID

• 1987 – Redundant array of inexpensive disks
 • Patterson, Gibson, Katz @ UCB
 » Gibson now at CMU
 » Katz made it happen while at DARPA
 » now it’s everywhere

• Reliability through redundancy
 • key idea is to stripe data over more than 1 disk
 • avoid disaster on a single point failure
 » e.g. head crash, AWOL controller, ...
 » even better
 • make sure disks are physically separate
 » ERM or earthquakes take out a warehouse
 • striping model determines RAID type
 » also improves access time for large files
 » no additional seeks between tracks
 » also impacts cost

RAID 0

• No redundancy
 • hence a bit of a misnomer
 • cheap but unable to withstand a single failure
 » except for those correctable w/ block CRC’s
 • access advantage is the only benefit

RAID 1

• Mirroring
 • files on both disks
 • CRC check block option says if one disk fails you’ll know
 » you’re betting that both won’t fail concurrently
 • note interesting option
 » read disk that delivers first
 • if taken this destroys arm synchronization which will penalize
 writes
 • as usual – you want to optimize the common case which is read
 access
 • most expensive
 » 2x disks for x capacity
 » w.r.t. RAID 0
 • read energy minimized – same as RAID 0
 • write energy doubles over RAID 0
 • large block access benefit may be less
RAID1 Variants

- **RAID 1+0 (a.k.a. RAID10)**
 - striped mirrors
 - n pairs of disks (4 disk minimum)
 - think of n RAID1 pairs
 - benefit is access time due to striping
 - but more disks = cost
- **RAID 0+1 (a.k.a. RAID01)**
 - mirrored stripes
 - 2 sets of n/2 disks
 - pairs are not fixed
 - and mirroring happens on a separate set
 - more complex than RAID 1+0
 - benefit is multiple drive failure in 1 set’s mirror won’t cause
 - loss

RAID2

- Hamming code parity
 - ECC style memory correction
 - # disks will depend on ECC model
 - If ECC is on the same disk as data then you lose
 - result
 - many configurations possible
 - tend to be rare (non-existent?) in practice
 - better for mental gymnastics than products

RAID3

- Bit-interleaved parity
 - use one additional check disk to hold parity information
 - $Dp = D1 + D2 + D3 + \ldots + Dn$ (+ = XOR here)
 - lose one disk and all is well
 - failure recovery is longer but cost is reduced since there’s
 only 1 extra disk
 - typically a wise choice since failure is rare
 - potential problems
 - writes: all disks must be accessed to determine parity block
 - parity disk is always hammered
 - disks must be rotationally synch’d
 - byte level striping is common
 - e.g. very small block
 - high performance is result

RAID4

- Same idea as RAID3 but with an optimization
 - interleave blocks rather than bits
 - only read the modified disk
 - note the change
 - then fix the parity block
 - allows read parallelism
 - nice balance of small vs. large reads vs. writes
 - remaining problem - parity disk needs to be accessed on every
 write -> bottleneck source
RAID5

- Striped set with distributed parity
 - Interleave the check disk

RAID6

- Striped set with dual distributed parity
 - take RAID5 and add a second check function & disk
 - now resilient under double disk failure
 - parity for each check function must lie on a different disk

Beyond RAID6

- with multiple RAID controllers a hierarchical disk system can be employed
- there are officially RAID7/8/9 as well
 - but hopefully this is sufficient to get the idea across

Non-standard RAID systems are also deployed

- many just slightly varied from a standard RAID approach
- Software RAID – e.g. OS based controller
 - MAC OR X - RAID 0, 1, or 10
 - Linux - RAID 0, 1, 4, 5, 10, ...
 - others exist – slower than HW versions but portable

CGR Better than Moore’s Law

Interfaces & Improvement

- Interfaces
 - Control moves onto the disk
 - replaces motherboard control
 - now - microprocessor and SRAM inside the disk
 - Parallel to high speed serial interfaces
 - limited by short fat cable issues
 - serial Fiber Channel – 1997, SAS, SATA
 - serial enables storage area networks (NAS)
 - Key improvement contributors
 - thinner magnetic platter coating
 - improvements in head design
 - lower flying height
 - accuracy of head positioning servo
 - hard to do cheaply
 - hence BPI CGR leads TPI CGR
Access

- A disk address
 - Indirectly resolved to
 - surface, radius, angle
 - polar coordinates resolve to cylinder & sector

- Performance
 - as always multiple metrics
 - latency vs. response time
 - since seek and rotational latency varies significantly
 - response time usually averaged over large number of accesses
 - bandwidth vs. transfer rate
 - transfer rate = IOPS * average block size
 - dependent on disk RPM and linear density (BPI)
 - multiple requests queued in disk controller
 - hence response time looks exponential w/ increase in
 - throughput, request arrival rate, utilization
 - e.g., increased queuing delay
 - optimization possible be reordering requests

Disk Futures

- Disk demise oft predicted
 - "greatly exaggerated" as Mark Twain said
- Horizontal to vertical transition underway
 - increased areal density should continue
- MAID might threaten tape for offline storage
 - massive array of idle disks
- Reduced form factor
 - may enable RAID
 - and server storage bricks may become available in PC's
 - brick is a bunch of disks, controller, and battery
 - idea even if power goes down disk writes complete
- Common saying
 - Silicon Valley misnomer
 - more money made due to FeO2 than Si

Disk Storage Layers

- Physical Layer
 - physics and engineering to just make disks work
- Data Layer
 - arrangement of data in blocks, sectors, stripes, ...
- Internal Control Layer
 - what the processor in the disk deals with
- Interface Layer
 - specifics of the drive Interfaces
- Cache or External Control Layer
 - use of caches to improve performance
 - issues in management of multiple drives
 - RAS issues such as RAID
 - power issues such as MAID
 - huge issue for the datacenter

Physical Layer

- 3 major components
 - magnetic recording physics
 - ferromagnetic materials
 - magnetized by external field
 - stable after external field is removed
 - common elements: iron, nickel, cobalt
 - rare earth: gadolinium, dysprosium
 - rapidly quenched metal alloys form amorphous FM materials
 - electron spin creates a magnetic field
 - non-FM materials consist of electron pairs w/ opposite spins
 - FM materials
 - non-paired valence shells
 - long range atomic ordering (aligned in parallel) to form a domain
 - beware the Curie temperature
 - above which the FM material loses to thermal entropy
 - electromagnetic and magnetic components
 - integrated electronics in the drive
HDD Anatomy

source: Jacob's book (similarly with subsequent figures)

Electronics

- Small PCB inside
 - Controller
 - receive commands, schedule, and report back when command executes
 - manage the disk cache
 - interface with HDA – e.g. seek and sector targets
 - error recovery and fault management
 - power management
 - start/stop control

Controller Illustrated

DRAM Role

- 3 distinct roles
 - scratch-pad
 - on power up
 - load protected data from platter
 - defect maps
 - ID tables
 - adaptive operational parameters
 - queue of commands
 - speed matching
 - interface and disk bandwidths and timing differ
 - cache
 - read pages
 - write buffer
Write Channel

- Several duties
 - Limit run length of 0’s
 - No transitions for too long ruins clock recovery
 - Several modulation codes possible
 - Obvious 2 bits/logical bit (50% efficient)
 - Need to consider ISI (inter-symbol interference)
 - Mitigated by write precompensation

Read Channel

- GMR yields < 1mv ΔV
 - Differential preamp located in the AEM
 - AGC (auto gain control)
 - Low pass filter to reduce high-freq noise
- Detection, clock recovery, & decode

And Finally

- Motor controls
 - Simple ADC/DAC
 - But with adaptive correction
 - For positioning drift & thermal issues

Disk Reliability

- Beware the manufacturer claims
 - Data extrapolated on accelerated life test data
 - Environmental tests on a small population
 - And from unit returns
 - No idea how the unit was operated or treated
 - Well, hammer marks might be a clue...
 - Warranty expires in 3 years so > 3 year olds are excluded
- Google data
 - Record data on all of their hard drives every few minutes
 - And save forever (how many disks does that take – YOW!)
Key Findings

- Contrary to popular belief
 - Little correlation between failure and elevated temperature or activity levels
- SMART really isn’t that smart
 - Some SMART parameters have a large impact on failure probability
 - Scan errors, reallocation counts, offline reallocation counts, and probational counts
 - However, large fraction of failed drives had no SMART warnings
 - Hence unlikely that SMART data alone can be used to form an accurate predictive model
- Can’t trust the manufacturer or the drive SMART’s
 - What the heck do you do?
 - Take a statistical approach
 - Hmm – obvious Google theme here

Annualized Failure Rate

Figure changes significantly when stats are normalized by model

SMART data didn’t change by model

Conclusions

- Disks are hugely important
 - 90% of the new world knowledge stored there in 2002
 - Likely higher today
- BUT they fail
 - Predicting failure is hard
 - Common temperature, utilization, power-on-off cycles bad
 - Turn out to be not observable in practice by the Google folks
 - Some SMART data gives you an early warning
 - But less than half of the time
- Bottom line
 - If your data is on one drive
 - You’re screwed
 - So fix this problem YESTERDAY

Final Remarks

- What you should remember
 - RAID schemes
 - Disk storage layers
 - General disk anatomy
- There’s a lot we didn’t cover
 - Huge improvement in materials
 - Platter surface, spindle bearings, data encodings, ...
 - Why?
 - Time & focus on system architecture
- Disks are a big deal in the “cloud”?
 - Probably just as important as the processors
 - Battery backed bricks are common
 - Want to finish outstanding writes before system goes down
- Storage is a complicated space
 - We’ve scratched the surface today