Today's topics:
Faulte & RAS
RAID models
Some underlying disk technology
very brief – more complicated than you might guess
more depth will appear in CS7810
·····

Improving Reliability		
Make better parts		
 doable in some cases 	& huge cost adder	
Use less parts		
natural consequence	of higher levels of int	tegration
Employ redundancy		
 common choice 		
» 2x – OK as long as w	ve agree	
» 3x – vote and 1 can	fall	
» Nx – vote and (N/2)-1	1 can fall	
 duplicate what? 		
» bits, components, w	rires, gates,	
 nuge choice set bits and component 	its are common choices too	iav
• wires and gates ma – If intra-IC device	ay be in our future is become flakey	
Bottom line – Pandora ³	's box just opened	
 Dan Slewlorek's book 	is an excellent refer	ence text
School of Computing University of Utah	7	CS6810

CS6810

- Think selfishly
 - what would be a bigger disaster
 - » losing your files
 - » losing your PC
 - » If they are the same, you really should fix this YESTERDAY
- The point
 - we view disk storage as archival in most cases
 - backups are increasingly on disk
 - » commercial archives are often tape based for "old stuff" • cheaper but a pain in the tuckus to retrieve from the cave
 - · checkpoints are always on disk
 - NVRAM option may be cost effective in the future
 w more on this next lecture
- So let's look at disk reliability
 - and then a brief glance at the underlying technology

9

School of Computing University of Utah

CS6810

CS6810

	Access	
A disk address		
 Indirectly resolved 	to	
» surface, radius, a	ngle	
 polar coordinate 	as resolve to cylinder & sector	
erformance		
• as always multiple	metrics	
» latency ::= respor	nse time	
 since seek and 	rotational latency varies significantly	,
 response time u 	isually averaged over large number of	accesses
» bandwidth ::= tra	nsfer rate	
 transfer rate = i dependent or 	OPS"average block size n disk RPM and linesi density (BPI)	
• multiple requests a	ueued in disk controller	
» hence response t • throughput, req • e.g. increased q	ime looks exponential w/ increas uest arrival rate, utilization ueueing delay	e in
» optimization pose	ible be reordering requests	
School of Computing		
University of Utah	21	CS6810

Annualized Failure RateOf a grad of allow of

