
Page 1

1 CS6810
School of Computing
University of Utah

 Big Iron

 Today’s topics:

Vector Processors and Supercomputers

 VP’s came first – now exist as GPGPU’s

 figure source: text Appendix F

 Supercomputers

 lots of microprocessors with a fancy
 interconnect – a look at the top500

 Datacenter “cloud” Computing

 lots of blades w/ fancy interconnect

 AND fancy storage systems (this is not DRAM!)

2 CS6810
School of Computing
University of Utah

Review

•  Roadblocks to parallelism
  wide issue & deep pipelines

»  dynamic OOO issue
•  huge # of instructions on the fly

•  quadratic circuit complexity to keep track of everything
–  forwarding, ROB size, # of registers

•  power density kills you

•  performance still limited by ILP in the program

»  VLIW
•  compiler does most of the scheduling work

•  still huge # of instructions on the fly

•  power density is still a problem
–  this will continue to be a common theme

•  performance also limited by ILP

•  Enhancing parallelism
  multi- threads, cores, sockets

»  main game today

»  might be easier to build than program

Page 2

3 CS6810
School of Computing
University of Utah

1st Supercomputers

•  Vector machines
  often attributed to Seymour Cray, but he says

•  “I’m certainly not inventing vector processors. There are three kind
 that I know of existing today. They are represented by the Illiac-IV,
 th (CDC) Star processor, and the TI (ASC) processor. Those three
 were all pioneering processors. . . . One of the problems of being a
 pioneer is you always make mistakes and I never, never want to be
 a pioneer. It’s always best to come second when you can look at
 the mistakes the pioneers made.

talk at LLNL – 1976 – on the introduction of the CRAY-1

•  Alternative programming model
  two data types

»  scalar and vector
•  not wildly dissimilar to map reduce (Google reinvention)

–  map sub-problems to some set of resources

–  reduce/combine sub-problem into final answer

  APL – Iverson’s 1969 book
»  +/(1, 2, 3) = 6

4 CS6810
School of Computing
University of Utah

Replace Loops w/ Vector Instructions

•  Vector-Vector add
  conventional

»  2 pointers to head of two vectors

»  offset with loop variable
•  A[i] + B[i] for all I

  vector model
»  Vadd A, B /1 instruction does a lot of work

»  no loop or instruction decode overhead

»  hazard checking only required between vector instructions

•  Issues
  each vector has to be contiguous

  machine has a native vector length
»  64 was common

•  pad if actual vector length is not in chunks of 64

  scientific programmers embraced the vector model
»  but how do you write a web browser?

Page 3

5 CS6810
School of Computing
University of Utah

2001 Vector Odyssey

•  Vector machines out of fashion

•  2002
  Japan’s Earth Simulator announced

»  virtual planet
•  predict environmental change impact on world climate

»  leads top500 list
•  widespread US panic @ government level

–  strategic leadership lost?

–  oh woe is us or U.S.

•  spurs supercomputer development
–  including new vector machines from Cray

•  Now
  wide-SIMD alive and well in GPGPU’s
  short-SIMD alive and well in CPU’s

  SIMD = short vector
»  same issues apply

6 CS6810
School of Computing
University of Utah

Basic Vector Architecture

•  2 parts
  scalar unit

»  similar to a normal CPU
•  OOO: NEC SX/5

•  VLIW: Fujitsu VPP5000

  vector unit
»  multiple FU’s (both int & float)

•  deeply pipelined for high clock frequencies

•  particularly true for FPU’s
–  primary focus for the scientific comp folks

•  2 basic architecture types
  vector-register processors

»  early CDC machnes

  memory-memory vector processors (vector RISC)
»  everything since about 1980

•  CRAY 1, 2, XMP, YMP, C90, T90, SV1, X1

•  NEC SX/2-SX/8, Fujitsu VP200-VPP5000, Hitachi S820 and S8300

•  Convex C-1 through C-4

Page 4

7 CS6810
School of Computing
University of Utah

Top Level Vector-Register VMIPS

64 element Vregs
2 read ports
1 write port
is it enough?

8 CS6810
School of Computing
University of Utah

Snippet of Real Machines

Page 5

9 CS6810
School of Computing
University of Utah

VMIPS ISA Snippet 1

10 CS6810
School of Computing
University of Utah

VMIPS ISA Snippet 2

Page 6

11 CS6810
School of Computing
University of Utah

DAXPY: MIPS vs. VMIPS

IC = 6 vs 600

12 CS6810
School of Computing
University of Utah

Performance

•  Vector execution time
  f(vector length, structural hazards, data hazards)

»  initiation rate: # of operands consumed or produced per cycle

»  multi-lane architecture
•  each vector lane can carry n values per cycle

–  often 2 or more

•  # vector lanes * lane width = initiation rate

  also dependent on pipeline fill and spill

•  Convoys (made up term)
  set of independent vector instructions

»  similar to an EPIC VLIW bundle

•  Chime
  time it takes to execute 1 convoy

•  Start up time
  time it takes to load the vector registers and fill the pipe

•  All contribute to execution time

Page 7

13 CS6810
School of Computing
University of Utah

Vector Memory Systems

•  Lots of bandwidth required to feed lots of XU’s
  very wide data bus

  banked memory
»  each bank indpendently addressed

•  not interleaved

•  multiple load and stores issued per cycle

•  each bank serves a particular load or store
–  assuming no bank conflict

–  compiler tries hard to avoid conflict

•  latency can be high for DRAM based memory
–  but bandwidth can be quite good

–  early CRAY machines used SSRAM’s – too expensive today

»  addressing? where are the bank select bits?

14 CS6810
School of Computing
University of Utah

Vector Length Control

•  Vec.reg.length != operand.vec.size (OVS)
  MVL = vec.reg.length

  enter VLR
»  specifies the operand vec size for a vector instruction

•  actual vector size often not known until run time

•  may even change based on a call parameter

•  APL rho(V) length (or structure if vector of vectors of …)

»  controls XU’s and Vector_Ld_Store Unit

»  VLR value <= vector.reg.length
•  hence not known until run time

•  statically known then compiler can issue LVLRI – immediate

  compiler generates “strip-mine” code based on OVS
»  rem(OVS, MVL) = odd size piece

•  do odd size piece first or last

»  OVS/MVL (truncating divide)
•  = number of loops or unrolls for MVL sized chunks

Page 8

15 CS6810
School of Computing
University of Utah

Vector Stride

•  What happens when vectors are in contiguous
 addresses
  consider MatMul

»  same problem in column (FORTRASH) or row (C) major order
 allocation

  stride = address distance between logically adjacent
 elements

  solution = stride operand to vector load store unit
»  on reads = gather

»  on writes = scatter

   scatter-gather load store unit
»  a key innovation for vector processors

»  LVWS instruction – load vector w/stride

»  Note:
•  banking conflicts may occur

•  start up time increases

•  CDC Star (APL like machine language) classic example

16 CS6810
School of Computing
University of Utah

Enhancing Vector Performance 1

•  Chaining
  originally developed in the CRAY-1

»  now fairly ubiquitous

»  same basic idea as forwarding

  consider

»  RAW hazard – but if drive entire vector to forward destination

»  essentially chains XU’s together

  problems?

Page 9

17 CS6810
School of Computing
University of Utah

Enhancing Vector Performance 1

•  Chaining
  originally developed in the CRAY-1

»  now fairly ubiquitous

»  same basic idea as forwarding

  consider

»  RAW hazard – but if drive entire vector to forward destination

»  essentially chains XU’s together

  problems?
»  the usual = exceptions

•  same barrier to performance

•  solution – chained or not modes

•  debug in not – do real run in chained mode

18 CS6810
School of Computing
University of Utah

Enhancing Vector Performance 2

•  Conditionals
  also a performance barrier

•  Solution similar to the normal CPU case
  employ conditional instructions

»  predication in EPIC

»  but borrow mask idea from early SIMD machines
•  like ILLIAC IV

»  execute the predicate on the vector
•  create a mask vector of the same length

»  then do the real operation in masked fashion

Page 10

19 CS6810
School of Computing
University of Utah

Enhancing Vector Performance 3

•  Sparse matrix computation
  matrices too big to store directly

  hence use indirection

»  scatter-gather memory now takes a bit longer
•  same idea however

  or use a bit vector to indicate valid entries
»  use as a mask

  new instructions (set up time increases though)
»  load and store vector indexed: LVI and SVI

20 CS6810
School of Computing
University of Utah

Enhancing Vector Performance 4

•  Increase lanes
  expensive but throw more XU’s and datapath at the

 problem

Page 11

21 CS6810
School of Computing
University of Utah

Vectorizing Compilers

•  Take advantage of data-parallelism
  not as easy as it seems but lots of success after years of

 effort (D. Kuck – UIUC, KAI  Portland group)

22 CS6810
School of Computing
University of Utah

Cray X1 (2002)

•  Lots of processor cores with streaming caches
  unified global memory

  fully connected interconnect

SSP – single streaming processor
MSP – multi-stream processor

Page 12

23 CS6810
School of Computing
University of Utah

Today’s SuperComputers

•  www.top500.org Nov 2009
  Cray Jaguar XT5-HE (Oak Ridge NL, 1.7 Peta-Flops)

»  6 core Opteron CPU’s – 2.6 GHz

»  Black Widow interconnect (YARC switches)

  IBM Roadrunner Blade Center QS22/L21 Cluster (LANL)
»  PowerXCell 8i 3.2 GHz

»  Opteron DC 1.8 GHz

»  Voltaire infiniband interconnect

  Kraken XT5 (Cray XT5-HE) – Univ. Tenn (NICS)

  Jugene (IBM BlueGene/P) – research center Juelich, GER
  Tianhe (Milky Way) – China Defense Univ.

  SGI Pleiades
»  Nehalem quad core 3 GHz

•  Bottom line
  high-end microprocessors, lots of memory, fancy

 interconnect

  lots of watts and dollars

24 CS6810
School of Computing
University of Utah

Cray Jaguar

source: www.pnl.gov

Page 13

25 CS6810
School of Computing
University of Utah

Cray Jaguar

•  Comprising
  45,000 quad-core Opteron CPU’s (180K cores)

  362 TB of main memory
»  578 GB/sec main memory bandwidth

»  284 GB/sec I/O bandwidth

  10 PB of disk
  Fat tree interconnect moving to 3D Torus

»  radix 64 YARC swithes

•  Cost
  $100M – government contract

»  no way to know if they made money

  7 MegaWatts of power
»  plus another 7 MW to run the chillers

•  typical cooling energy = machine energy

»  @ current Tennessee industrial rates 6.45 cents/kWh
•  $7,910,280 per annum power bill

  your tax payer dollars at work

26 CS6810
School of Computing
University of Utah

IBM RoadRunner

source: news.cnet.com

Page 14

27 CS6810
School of Computing
University of Utah

IBM RoadRunner

•  Comprising
  13,824 cores

»  6912 Opteron sockets
•  6480 for compute, 432 for managment

»  12,960 PowerXCell 8i sockets (2/Opteron)
•  1 Power5 core and 8 SPE cores = 116,640 cores

  Packaging in Tri-blades (source Wikipedia)

28 CS6810
School of Computing
University of Utah

RoadRunner in the Large

•  CU – 60 BladeCenterH modules in a cabinent

•  Other
  103.6 TB Ram

  216 x3755 I/O nodes –

  26 radix 288 ISR2012 Infiniband 4x DDR switches

  296 racks

  2.35 MW operating power

source: Wikipedia

Page 15

29 CS6810
School of Computing
University of Utah

Concluding Remarks

•  For supercomputers – what matters most?
  blade configuration

  rack configuration
  interconnect

»  on the blade

»  in the rack

»  between racks

  how memory is partitioned
»  remote vs. local access latencies and bandwidths

  memory capacity and organization

  the cores

  power and performance on big benchmarks

•  If you choose one for your final HW
  there’s a lot of advertizing copy

  try to dig past that

