Big Iron

Today’s topics:
Vector Processors and Supercomputers
VP’s came first - now exist as GPGPU’s
figure source: text Appendix F
Supercomputers

lots of microprocessors with a fancy
interconnect - a look at the top500

Datacenter “cloud” Computing
lots of blades w/ fancy interconnect

AND fancy storage systems (this is not DRAM!)
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Review

* Roadblocks to parallelism
= wide issue & deep pipelines
» dynamic 000 issue

¢ huge # of Instructions on the fly

* quadratic circuit complexity to keep track of everything
- forwarding, ROB size, # of registers

* power density kills you

* performance still limited by ILP in the program

» VLIW

* compiler does most of the scheduling work

« still huge # of instructions on the fly

* power density is still a problem
- this will continue to be a common theme

¢ performance also limited by ILP

* Enhancing parallelism
* multi- threads, cores, sockets
» main game today
» might be easier to huild than program
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1st Supercomputers

e Vector machines

= often attributed to Seymour Cray, but he says

¢ “’m certainly not inventing vector processors. There are three kind
that | know of existing today. They are represented by the llliac-IV,
th (CDC) Star processor, and the Tl (ASC) processor. Those three
were all pioneering processors. . . . One of the problems of being a
pioneer is you always make mistakes and | never, never want to be
a pioneer. It’s always best to come second when you can look at
the mistakes the ploneers made.

talk at LLNL - 1976 - on the introduction of the CRAY-1

¢ Alternative programming model

= two data types

» scalar and vector
¢ not wildly dissimilar to map reduce (Google reinvention)
— map sub-problems to some set of resources
- reduce/combine sub-problem Into final answer

= APL - Iverson’s 1969 book
» #/(1,2,3)=6
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Replace Loops w/ Vector Instructions

¢ Vector-Vector add
= conventional
» 2 pointers to head of two vectors
» offset with loop variable
* A[I] + B[I] for all |
= vector model
» Vadd A, B /1 instruction does a lot of work
» no loop or instruction decode overhead
» hazard checking only required between vector instructions

* Issues
= each vector has to be contiguous

* machine has a native vector length
» 64 was common
» pad if actual vector length is not in chunks of 64

= scientific programmers embraced the vector model
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2001 Vector Odyssey

e Vector machines out of fashion

e 2002
= Japan’s Earth Simulator announced

» virtual planet
* predict environmental change impact on world climate

» leads top500 list
* widespread US panic @ government level
- strategic leadership lost?
- oh woe is us or U.S.
* spurs supercomputer development
- including new £ hi from Cray

e Now
* wide-SIMD alive and well in GPGPU’s
= short-SIMD alive and well in CPU’s
= SIMD = short vector
» same issues apply
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Basic Vector Architecture

e 2 parts
= scalar unit
» similar to a normal CPU
* 000: NEC SX/5
¢ VLIW: Fujitsu VPP5000
= vector unit
» multiple FU’s (both int & float)
* deeply pipelined for high clock frequencies

 particularly true for FPU’s
— primary focus for the sclentific comp folks

¢ 2 basic architecture types
= vector-register processors
» early CDC machnes
* memory-memory vector processors (vector RISC)

» everything since about 1980
« CRAY 1, 2, XMP, YMP, C90, T90, SV1, X1
* NEC SX/2-SX/8, Fujitsu VP200-VPP5000, Hitachi S820 and S8300
* Convex C-1 through C-4
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Top Level Vector-Register VMIPS

Main memory

Vector
load-store -

Vector

registers

Scalar

64 element Vregs
2 read ports

1 write port

is it enough?

registers g

FP add/subtract

FP multiply

FP divide

Integer

Logical
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Snippet of Real Machines

Vector Elements per
clock register Vector
rate Vector (64-bit load-store
Processor (year)  (MHz) registers  elements) Vector arithmetic units units Lanes
Cray-1 (1976) 80 8 64 6: FP add, FP multiply, FP reciprocal, 1 1
integer add, logical, shift
Cray X-MP (1983) 118 8: FP add, FP multiply, FP reciprocal, 2 loads 1
8 64 integer add, 2 logical, shift, population 1 store
Cray Y-MP (1988) 166 count/parity
Cray-2 (1985) 244 8 64 5: FP add. FP multiply, FP reciprocal/sqrt, 1 1
integer add/shift/population count, logical
Fujitsu VP100/ 133 8-256 32-1024 3: FP or integer add/logical, multiply, divide 2 1 (VP100)
VP200 (1982) 2 (VP200)
Hitachi S810/5820 71 32 256 4: FP multiply-add, FP multiply/divide-add 3 loads 1(S810)
(1983) unit, 2 integer add/logical 1 store 2 (S820)
Convex C-1(1985) 10 8 128 2: FP or integer multiply/divide, add/logical 1 1 (64 bit)
2 (32 bit)
NEC SX/2 (1985) 167 8+32 256 4: FP multiply/divide, FP add, integer add/ 1 4
logical, shift
Cray C90 (1991) 240 8: FP add, FP multiply, FP reciprocal, 2 loads 2
8 128 integer add, 2 logical, shift, population 1 store
Cray T90 (1995) 460 count/parity
NEC SX/5 (1998) 312 8+64 512 4: FP or integer add/shift, multiply, divide, 1 16
logical
School of Computin
W) g 8 €S6810

University of Utah

Page 4




VMIPS ISA Snippet 1

Instruction Operands Function

ADDV.D vi,v2,v3 Add elements of V2 and V3, then put each result in V1.
ADDVS.D Vi,V2,F0 Add FO to each element of V2, then put each result in V1.
SUBV.D vi,v2,v3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS.D V1,vV2,F0 Subtract FO from elements of V2, then put each result in V1.
SUBSV.D V1,FO0,V2 Subtract elements of V2 from FO, then put each result in V1.
MULV.D V1,v2,V3 Multiply elements of V2 and V3, then put each result in V1.
MULVS.D V1,v2,F0 Multiply each element of V2 by FO, then put each result in V1.
DIVV.D vi,v2,v3 Divide elements of V2 by V3, then put each result in V1.
DIVVS.D V1,V2,F0 Divide elements of V2 by F0, then put each result in V1.
DIVSV.D V1,F0,V2 Divide FO by elements of V2, then put each result in V1.
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VMIPS ISA Snippet 2

LV V1,R1 Load vector register V1 from memory starting at address R1.

N R1,V1 Store vector register V1 into memory starting at address R1.

LVWS V1,(R1,R2) Load V1 from address at R1 with stride in R2, i.e., R1+1 x R2.

SVWS (R1,R2),V1 Store V1 from address at R1 with stride in R2, i.e., R1+1 x R2.

LVI V1, (R1+V2) Load V1 with vector whose elements are at R1+V2 (1), i.e., V2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1+V2 (i), i.e., V2 is an index.

CVI V1,R1 Create an index vector by storing the values 0, 1 xR1, 2 xR1,...,63 xR1 into V1.
S--V.D V1i,v2 Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put
S--VS.D V1,FO a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-

mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in the vector-mask register and store count in R1.

CVM Set the vector-mask register to all 1s.

MTC1 VLR,R1 Move contents of R1 to the vector-length register.

MFC1 R1,VLR Move the contents of the vector-length register to R1.

MVTM VM,FO Move contents of FO to the vector-mask register.

MVFM FO,VM Move contents of vector-mask register to FO.
School of Computin
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DAXPY: MIPS vs. VMIPS

L.D FO,a ;1oad scalar a
DADDIU R4,Rx,#512 ;last address to load
Loop: L.D F2,0(Rx) ;Toad X(1)

MUL.D F2,F2,F0 sa x X(1)
L.D F4,0(Ry) sToad Y(i)
ADD.D F4,F4,F2 sa x X(i) + Y(i)
S.D 0(Ry),F4 ;store into Y(i)

IC =6 vs 600 DADDIU Rx,Rx,#8 sincrement index to X
DADDIU Ry,Ry,#8 sincrement index to Y
DSUBU R20,R4,Rx scompute bound
BNEZ R20, Loop scheck if done

Here is the VMIPS code for DAXPY.

L.D FO,a ;1oad scalar a

LV V1,Rx ;1oad vector X

MULVS.D V2,V1,F0 svector-scalar multiply
LV V3,Ry ;1oad vector Y

ADDV.D va,v2,v3 ;add

SV Ry,V4 ;store the result
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Performance

e Vector execution time

= f(vector length, structural hazards, data hazards)
» initiation rate: # of operands consumed or produced per cycle

» multi-lane architecture

* each vector lane can carry n values per cycle
- often 2 or more
 # vector lanes * lane width = Initlation rate

* also dependent on pipeline fill and spill
e Convoys (made up term)

= set of independent vector instructions
» similar to an EPIC VLIW bundle

e Chime

= time it takes to execute 1 convoy
Start up time

= time it takes to load the vector registers and fill the pipe
¢ All contribute to execution time
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Vector Memory Systems

¢ Lots of bandwidth required to feed lots of XU’s
= very wide data bus

* banked memory
» each bank indpendently addressed

¢ not interleaved

* multiple load and stores issued per cycle

* each bank serves a particular load or store
- assuming no bank conflict
- compller tries hard to avold conflict

¢ latency can be high for DRAM based memory
- but bandwidth can be quite good
- early CRAY machines used SSRAM’s - too expensive today
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Vector Length Control

* Vec.reg.length != operand.vec.size (OVS)
= MVL = vec.reg.length
= enter VLR
» specifies the operand vec size for a vector instruction
* actual vector size often not known until run time

* may even change based on a call parameter
¢ APL rho(V)-> length (or structure if vector of vectors of ...)

» controls XU’s and Vector_Ld_Store Unit
» VLR value <= vector.reg.length
* hence not known until run time
* statically known then compiler can issue LVLRI - immediate
= compiler generates “strip-mine” code based on OVS
» rem(OVS, MVL) = odd size piece
* do odd size piece first or last
» OVS/MVL (truncating divide)
¢ = number of loops or unrolls for MVL sized chunks
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Vector Stride

* What happens when vectors are in contiguous
addresses
= consider MatMul

» same problem in column (FORTRASH) or row (C) major order
allocation

= stride = address distance between logically adjacent
elements
= solution = stride operand to vector load store unit
» on reads = gather
» on writes = scatter
= =2 scatter-gather load store unit
» a key innovation for vector processors
» LVWS instruction - load vector w/stride

» Note:
* banking conflicts may occur
* start up time Increases
* CDC Star (APL like machine language) classic example
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Enhancing Vector Performance 1

e Chaining
= originally developed in the CRAY-1
» now fairly ubiquitous
» same basic idea as forwarding

= consider
MULV.D V1i,v2,V3
ADDV.D V4,V1,V5

» RAW hazard - but if drive entire vector to forward destination
» essentially chains XU’s together

= problems?

School of Computing
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Enhancing Vector Performance 1

e Chaining
= originally developed in the CRAY-1
» now fairly ubiquitous
» same basic idea as forwarding
= consider

MULV.D Vi,ve,v3
ADDV.D V4,V1,V5

» RAW hazard - but if drive entire vector to forward destination
» essentially chains XU’s together
= problems?

» the usual = exceptions
* same barrier to performance
¢ solution - chained or not modes
* debug In not - do real run In chalned mode
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Enhancing Vector Performance 2

¢ Conditionals
= also a performance barrier

¢ Solution similar to the normal CPU case
= employ conditional instructions

» predication in EPIC

» but borrow mask idea from early SIMD machines
¢ like ILLIAC IV

» execute the predicate on the vector
* create a mask vector of the same length

» then do the real operation in masked fashion

LV V1,Ra ;1oad vector A into V1
LV V2,Rb ;1oad vector B
L.D FO,#0 ;1oad FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!=F0
SUBV.D V1,V1,Vv2 ;subtract under vector mask
CVM ;set the vector mask to all 1s
SV Ra,V1 ;store the result in A
School of Computin
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Enhancing Vector Performance 3

e Sparse matrix computation
= matrices too big to store directly
* hence use indirection

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

» scatter-gather memory now takes a bit longer
* same Idea however

= or use a bit vector to indicate valid entries
» use as a mask

* new instructions (set up time increases though)
» load and store vector indexed: LVI and SVI

LV Vk,Rk ;Toad K

LVI Va, (Ra+Vk) sToad A(K(I))
LV Vm, Rm sload M

LVI Ve, (Rc+Vm) sToad C(M(I))
ADDV.D Va,Va,Vc sadd them

SVI (Ra+Vk),Va sstore A(K(I))
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Enhancing Vector Performance 4

¢ Increase lanes

= expensive but throw more XU’s and datapath at the
problem

Al9] B[9]

Alg] Bl8]

A7l |BI7)
Al6l| | Bl6]

Als] B[5]

Ald] Bl4]
ABl| |BI8]

Al2] Bl2]

All] B[1]

1

+

clo]

Element group
(a) (b)
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Vectorizing Compilers

* Take advantage of data-parallelism

* not as easy as it seems but lots of success after years of

effort (D. Kuck - UIUC, KAI 2 Portland group)

Operations executed

Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized hand-optimized hand optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 91.1% 92.0% 1.01
SPEC77 90.3% 90.4% 1.07
MDG 87.7% 94.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 392
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 2.15
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Cray X1 (2002)

* Lots of processor cores with streaming caches
* unified global memory

= fully connected interconnect

SSP SSP

(] || [s]
MM MM

0.5MB 0.5MB 0.5MB
Ecache Ecache Ecache

0.5 MB
Ecache

L]

LI ]
ERR R IR ER R

IRRE}

| E] Superscalar unit Vector unit |

SSP - single streaming processor
MSP — multi-stream processor
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Today’s SuperComputers

e www.top500.org Nov 2009
= Cray Jaguar XT5-HE (Oak Ridge NL, 1.7 Peta-Flops)
» 6 core Opteron CPU’s — 2.6 GHz
» Black Widow interconnect (YARC switches)
IBM Roadrunner Blade Center QS22/L21 Cluster (LANL)
» PowerXCell 8i 3.2 GHz
» Opteron DC 1.8 GHz
» Voltaire infiniband interconnect
Kraken XT5 (Cray XT5-HE) — Univ. Tenn (NICS)
* Jugene (IBM BlueGene/P) - research center Juelich, GER
* Tianhe (Milky Way) - China Defense Univ.
= SGI Pleiades
» Nehalem quad core 3 GHz
* Bottom line

* high-end microprocessors, lots of memory, fancy
interconnect

= lots of watts and dollars
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Cray Jaguar

source: WWW.pn|.g0V
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Cray Jaguar

e Comprising
= 45,000 quad-core Opteron CPU’s (180K cores)
= 362 TB of main memory
» 578 GB/sec main memory bandwidth
» 284 GB/sec 1/0 bandwidth
= 10 PB of disk
= Fat tree interconnect moving to 3D Torus
» radix 64 YARC swithes

e Cost
* $100M - government contract
» no way to know if they made money
= 7 MegaWatts of power
» plus another 7 MW to run the chillers
* typical cooling energy = machine energy
» @ current Tennessee industrial rates 6.45 cents/kWh
¢ $7,910,280 per annum power bill
= your tax payer dollars at work
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IBM RoadRunner

source: news.cnet.com
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IBM RoadRunner

e Comprising
= 13,824 cores
» 6912 Opteron sockets
* 6480 for compute, 432 for managment
» 12,960 PowerXCell 8i sockets (2/Opteron)
* 1 Power5 core and 8 SPE cores = 116,640 cores

* Packaging in Tri-blades (source Wikipedia)

Roadrunner
TriBlade
n PCle x8 e
Qs22 kel Qs22 P |
| . 1
i . e .
Ls21
o L
R e —. Pl —LJ.:] T xte
o Lk Opteron 2210 e
Expansion ﬂ r el
Blade g e
'—l—' 4GB RAM 4GB RAM
"
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RoadRunner in the Large

Roadrunner, tiered architecture

TrBiade Standard 42U Rack Rosdrunner chuster
TriBlade: Rack Connected Unit: Roadrunner Cluster:
4x PowerXCell 81 4x BladeCenter H 15x Racks 18x Connected Units
2x Opteron 2210 b 12x Tridiades 60x BiadeCenter H 270x Racks
32x GB RAM 48x PowerXCall 81 180x TriBlades 1080x BladeCenter H
~400 Gflops 24x Opteron 2210 720x PowerXColl 8 3240 TriBlados
384 GB RAM 360x Opteron 2210 12960x PowerXCel 8
I ~4.8Thops 5.76 T8 RAM 180x Opteron 2210
Intnand 4x ~72 Thops 103.6 TB RAM
~1.3 Pllops
BladeCenter H ¢ Com & Service node:
12x 10 nodes, IBM x3655 18x Com & Service nodes
DladeCenter H: ~250 Gops ~4.5 Thops.
MW & | S ouress | T mites
6x Opteron 2210 Infiniband switch, VoRaire ISR2012 2nd stage Infiniband:
9608 RAN X8 Infiniband switches
wanband  ~1.2Thops

Omer CUs 296x Racks in total

source: Wikipedia

¢ CU - 60 BladeCenterH modules in a cabinent
e Other
* 103.6 TB Ram
= 216 x3755 1/0 nodes -
= 26 radix 288 ISR2012 Infiniband 4x DDR switches
= 296 racks
= 2.35 MW operating power
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Concluding Remarks

¢ For supercomputers — what matters most?

blade configuration
rack configuration
interconnect
» on the blade
» in the rack
» between racks
how memory is partitioned
» remote vs. local access latencies and bandwidths
memory capacity and organization
the cores
power and performance on big benchmarks

¢ If you choose one for your final HW

there’s a lot of advertizing copy
try to dig past that
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