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Computer Architecture 
CS/ECE 6810 

 Today’s topics: 

• course logistics & motivation 

• computer architecture as a profession 

• market segments 

• technology scaling and cost 
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Introductory Material 

•  A few tidbits on the instructor 

•  Pay close attention to the course web page 
  http://www.eng.utah.edu/~cs6810 

  it will change so keep up to date on what’s there 

•  Why study computer architecture? 
  it’s required for CS grad students 

»  OK I get that but will try to make it interesting anyway 

  for SW types: 
»  understanding the architecture  maximize code performance 

  for HW types: 
»  essential understanding for the profession 

  rich area where contributions are badly needed 
»  one of which might be your thesis 

  current state of the art is in a wild time 
»  architecture changes directions – see “badly needed” 

»  lots of job opportunities 
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Artifacts of Rapid Change 

•  Textbook 
  4th edition is significantly more relevant than previous

 versions 
»  BUT it’s now 2-3 years old and a lot has happened 

»  result: lectures will have some disagreements w/ the text 
•  reading the book will be necessary 

•  attending the lectures will hopefully also be valuable 

  the basic issues in the text are still important 
»  bulk of course will focus on this material 

  tons of research literature  
»  not a requirement in this course but helpful to clarify or deepen

 your understanding 

»  the internet is your friend 
•  as is the University’s subscription to digital libraries 

–  IEEE Xplore is probably the most useful 

–  ACM is a good 2nd choice 
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Computer Architecture 

•  Strictly speaking – it’s a whole system thing 
  study of the structure of computer hardware 

»  requires a diverse set of systems & circuit understanding 
•  languages & operating systems 

•  high level organizational issues (our focus in CS6810) 
–  processor, cache, main memory, I/O, networking/interconnect, storage 

•  analysis via tools such as simulation 
–  power, performance, energy efficiency, verification 

•  transistor circuits, wires, and fabrication technology 

•  layout, EDA tools, cooling, packaging, … 

»  you can’t be a wizard in one of these areas 
•  without understanding the constraints and interfaces imposed 

by the other disciplines 

•  The profession: 
  industry: design & build the systems of the future 

»  often w/ large teams of specialized wizards 

  academic: study and explore new directions 
»  few actually build things except as models via simulation 
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A Snippet of Modern History 

•  Mechanical difference engine 
  proposed in 1786 by J. H. Mueller 

  2 versions built by Charles  
Babbage in the 1820’s 

»  image at right is a replica in the 
computer museum in Mtn. View, CA 

•  Electronic computer 
  WW2: army needed something to 

compute ballistics tables 

  contract w/U Penn in 1943 

  operational in 1946 
»  analog machine 

»  programmed by plugging 
cables into the right spot 

»  YOW!! 

  numerous analog machines follow 
»  vacuum tubes, crystal diodes, … 
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History II 

•  Stored program computer 
  Concept: EDVAC report 1945 by John von Neumann 

»  hence the von Neumann architecture tag 

  Implementation 
»  Jun 1948 – Manchester Univ. experimental machine 

•  “Baby” SSEM (small scale experimental machine) 

•  memory = Williams Cathode Ray Tubes 

»  First practical: EDSAC May 1949 (also done in the UK) 
•  memory = delay-lines 
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Then Came Transistors … 

•  First all transistor computer 
  MIT’s Linc, TX-0, TX-2 – Wes Clark 1950’s 

»  led to networks, graphics, interactive computing 

•  Integrated circuit 
  more than one transistor on a die – 1958 

»  Rob’t Noyce and Gordon Moore @ Fairchild 
•  later founders of Intel 

  first microprocessor Intel 4004 in 1971 
»  10 um pMOS, 92 Kips, 740 KHz, 4-bit data-path, BCD 

»  it’s been a wild ride ever since 
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Unprecedented Improvement 

•  Moore’s surprising prediction in 1965 holds up 
  reasonably well so far 
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CAGR Inflection Points 

•  Improvement  
  consistent technology gain 

  architecture less consistent 

•  Inflection points 
  1st 25 years: 25% due to both 

  late 70’s uProcessors emerge 
»  35%  

»  + 17% from architecture 
•  RISC, pipelining, ILP and multiple issue (a.k.a. super scalar) 

»  16 years of Moore’s law growth 

  2002 things slow to ~20% 
»  3 key hurdles: thermals, insufficient ILP, slow memory 

•  DRAM improvement trends: CAGR = 7% 
–  latency hiding worked well until 2002 

  New agenda: TLP and DLP 
»  enter multi-threading and multi-core architectures 
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Computer Classes/Market Segments 

•  Note 
  today all classes are microprocessor based 

»  not all microprocessors are the same 
•  even when they appear to be the same to the programmer 

  also my classes are quite different than the text’s 

•  Embedded (fastest growth segment) 
  huge range: automotive, cell phones, … large internet

 switches  specialization 
»  CISCO EPS-1 already contains 192 core 

»  processors vary: 
•  4- 64-bit processors 

–  price from a few cents to a few hundred dollars 

–  system cost from $1 to $1M 

»  typical differentiation 
•  typical user tends to not be the programmer 

–  provides a relatively fixed function or service 

•  hard or soft real time performance often required 
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Segments (cont’d) 

•  Netbook 
  cheap, light, and a bigger screen than a cell phone 

»  battery life is a key issue 
•  processor performance compromised for energy efficiency 

•  Laptop 
  a bit heavier and more expensive 

»  more diversity in performance and energy efficiency than
 netbook 

»  processor and system cost: 2-5x netbook 

•  Desktop 
  market rapidly slowing due to netbook, laptop, and server

 expansion 
»  with a network the screen, keyboard, and compute gizmo’s

 need not be co-located 

»  diverse motherboard capability (performance, memory, etc.) 

»  $50 - $1000 processor, 5-10x more for system 
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Big Iron Segments 

•  Key additional difference 
  high enhanced  

»  interconnect, main memory, and storage subsystems 

•  Compute servers 
  usually a cluster of racks 

»  holding blades  
•  similar to desktop motherboard 

»  lots of choices for storage subsystem 

•  Datacenter/Warehouse 
  very large cluster of racks 

»  system cost from $100K to $10’sM 

»  redundant everything for high availability 

»  e.g. Google or the “Cloud” 

•  Supercomputer (single customer type, FPU focus) 
  check out the top 500 list: http://top500.org 

  system cost $10-100M 
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Addendum: Complex Embedded Systems 

•  Key characteristic 
  some things programmable and some things not 

»  not: ASIC or IP blocks 

•  Example: iPhone 
  Single programmable ARM core 

»  integrated with ~50 IP blocks 
•  each block is highly specialized (multiple blocks/chip) 

–  ~100x improvement in energy-delay product 

Cell Phone Part Computer Part 
Source: Anandtech 
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Computer Architecture 

•  Focus issues for CS6810 
  3 key components 

»  ISA (2 lectures from now – Appendix B) 

»  Organization 
•  high level structural aspects of various subsystems 

–  pipeline structure 

–  function unit structure 

–  processor structure 

–  cache hierarchy structure 

–  main memory structure 

–  I/O & network interface 

•  note there are other subsystems that we’ll get to in the 2nd half 
–  interconnect structure 

–  storage structure and technologies 

»  Hardware (only light coverage here) 
•  logic design, process, packaging, cooling, timing, wires … 

–  this is an almost endless list 

–  VLSI courses in analog and digital IC design should be next 

–  if you intend to live on the HW side of architecture 
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Intent of the Course 

•  Provide a foundation for future professional activity  
  at least 3 possible goals 

»  understanding the compute platform that you use 
•  key to achieving highly efficient code for SW types 

•  ISA and organization are what you care about 

»  research into new architectural options 
•  key academic role & possible thesis area preparation 

•  ISA, organization, and high level understanding of hardware
 constraints will be needed  

»  design of new systems 
•  perhaps the ultimate relevance 

•  further courses will be needed to finish this process 
–  VLSI & embedded systems courses will be your next step 

•  all 3 will are important 
–  in much greater depth 

•  OK that’s the sales pitch 
  for why you should care 
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Tracking Trends 

•  Fast moving arena & lengthy design process 
  typical 5-year design schedule 

»  typical design team ~500 engineers 

»  year 1: architectural concept and simulation infrastructure
 development 

»  year 2: architectural optimization, validation  
•  architecture freeze at the end of year 2 

»  year 3 & 4: circuit design, floor-planning, and packaging 
•  tape out at the end of year 4 

»  year 5 
•  refine process to achieve acceptable yields 

•  test and validate fab’d chips 

•  build inventory since volume sales commence  

•  Note 
  you need to design for a technology that doesn’t exist when

 the design phase starts 

  need to accurately predict what will be available 
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Technology Trends 

•  VLSI 
  transistor density improves 35%/yr 

»  due to process shrink 
•  there are some hidden dragon’s here 

  die size increases by 10-20%/yr 

  transistor budget/chip increases 40-55%/yr 
»  today the limit is power rather than # of T’s (more on this later) 

•  DRAM 
  capacity increases 40%/yr 

»  access latency increases at only 7%/yr however 

•  Disks get better in steps: 
  capacity CAGR ranges from 30% - 60% 

»  we’re back to 30% now 

  latency virtually unchanged (for MHD’s ~10ms) 
»  bandwidth significantly better however 

»  SSD’s now on the scene with much better latency than MHD’s
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Performance 

•  Bandwidth vs. Latency 
  bandwidth is associated with throughput 

  latency is the response time for a single transaction 

•  Usually you care about how fast your job runs 
  for any job that takes more than a few seconds 

  also depends on market segment 
»  latency critical for real time constraints 

»  throughput critical for data-center or supercomputer apps 
•  but your personal computer runs lots of processes too 

•  tends to bias throughput importance 

•  Power wall has changed the industry to throughput 
  killer uP is now dead as is single thread performance 

»  Intel cancels Tejas in 2004 

  TLP, DLP, and multi-core 
»  throughput centric will persist (exception is embedded

 segment) 
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Bandwidth Optimization Results 
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IC Scaling 

•  As feature size λ goes down 
  transistor speed scales as 1/λ

  wire speed scales as αRC 
»  as wires get smaller – cross section decreases, R increases 

•  aspect ratio changing somewhat to compensate 

•  wires do not shrink as much as T’s 

»  C goes down but not linearly 
•  plate C improves but sidewall is an issue 

•  sidewall C can be improved with process 
–  low-K dielectric and hot-wire air gap today 

»  wire speed for unrepeated wires is quadratic with length 
•  proper repeater spacing makes wire delay roughly linear 

•  at the expense of increased power for the repeaters 

•  Key result 
  wires are the problem (Ron Ho’s PhD thesis is a great read) 

»  increasing contribution to power 

»  scaling poorly w.r.t. transistors 
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IC Process 

•  iTRS is a predictor 
  industry consortium 

»  articulate what’s needed to stay on Moore’s curve 
•  2x transistor count improvement every 2 years 

•  1/sqrt(2) = .707 

»  http://itrs.net 
•  look for the 2008 update 

  it’s not strictly accurate but a good predictor 
»  Intel has recently pushed up the pace 

•  History (check out that .7 factor) 
  1997: 250nm 

  1999: 180nm 

  2001: 130nm 

  2003: 90 nm 

  2005: 65 nm 
  now: 45 nm 
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The End of Silicon 

•  When is the question 
  nothing lasts forever 

»  at some point the shrink will mean a transistor’s components
 will be smaller than a silicon atom 

•  clearly this can’t work 

  glass half full or empty predictions vary 
»  some see the sky falling now 

»  others say we can get to 6 or 7 nm 
•  but only if some current “unsolvables” get solved 

•  What’s the alternative 
  DNA soup 

  quantum computing 

  bigger problems or a solution – you choose 

•  For now and the foreseeable future 
  silicon and CMOS 

»  several silicon varieties: strained, SOI, … 
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Power Fundamentals 

•  2 components: 
  active – power consumed when something is happening 

  leakage – power consumed independent of activity 
  Ptotal = Pactive + Pleakage 

•  Pactive = αCV2f 
  hence linear with frequency 

•  Pleakage goes up 10x with every process step 
  process & circuit tricks have mitigated this significantly 

»  how many one-trick ponies are in the stable 

  additional ~2x w/ every 10 C temperature dependence 
»  also dependent on Vdd-Vth 

»  actual equation is quite hairy 

•  Voltage scaling 
  quadratic benefit for Pactive 

  problem for Pleakage 

  today there is little room for Vdd scaling 
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Cost 

•  Affected by market, technology, and volume 
  WCT (whole cost transfer) varies w/ volume 

»  tooling and fabrication set up is very expensive 

»  fab line cost scales as (1/λ)2 

•  Not that simple – what kind of cost? 
  cost to buy – this is really price 

  cost to maintain 

  cost to upgrade – never known at purchase price 

  cost to learn to use – Apple won this one for awhile 

  cost of ISV software 

  cost to change platforms – vendor lock not dominant today 

  cost of a failure – Pandora’s box 
»  see availability cost table Fig. 1.3 in your text 

•  Let’s focus on hardware costs 
  it’s simpler 
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Learning Curve: Process Matures 
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Cost of an IC 

•  More integration  IC is bigger piece of the total 

•  DRAM prices have very small margins 
  range from $20/die until end of life at ~$2 

»  DRAM die are put on DIMMs (8 -19/Dimm) 

»  you buy DIMMs 

•  IC’s traditionally 25-50% of WCT for desktop box 
  monitors and external disks may actually dwarf this cost 

  depends on system 
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Wafers vs. Chips 

Dual Core Opteron 117 Opteron Wafer 
90nm 
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Die Cost 

•  α depends on process 
  good estimate for α in 2006 is 4.0 

•  defects are very rare these days 
  yield is very near 100% on a mature process 

square peg in round hole term 
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Concluding Remarks 

•  It’s important to keep several things in mind when a
 design decision is made 
  cost and area issues 

  totally new means new verification tactics 
»  an increasing component of design cost 

  power and performance trade-off 

•  What’s the right metric 
  depends on what you care about 

  ideally you want more performance & less power for the
 work that you care about 

•  Note 
  power is an instantaneous, work independent metric 

  consider 
»  Q = energy x delayn  (more realistic measure of design quality) 

»  adjust n for your bias  
•  embedded n=1 typical, n=2 often used for performance oriented

 systems 


