

Introductory Material

- A few tidbits on the instructor
- Pay close attention to the course web page
- http://www.eng.utah.edu/~cs6810
- it will change so keep up to date on what's there
- Why study computer architecture?
- It's required for CS grad students
" OK I get that but will try to make it interesting anyway
- for SW types:
" understanding the architecture \rightarrow maximize code performance
- for HW types:
" essential understanding for the profession
- rich area where contributions are badly needed " one of which might be your thesis
- current state of the art is in a wild time
" architecture changes directions - see "badly needed" " lots of job opportunities

(U) School of Computing	2	CS6810

Artifacts of Rapid Change

- Textbook
- $4^{\text {th }}$ edition is significantly more relevant than previous versions
" BUT it's now 2-3 years old and a lot has happened
" result: lectures will have some disagreements w/ the text
- reading the book will be necessary
- attending the lectures will hopefully also be valuable
- the basic issues in the text are still important
" bulk of course will focus on this material
- tons of research literature
" not a requirement in this course but helpful to clarify or deepen your understanding
" the internet is your friend
- as is the University's subscription to digital libraries

IEEE Xplore is probably the most useful
ACM is a good $\mathbf{2}^{\text {nd }}$ choice

UJ) School of Computing University of Utah	3	CS6810

[^0]
Computer Architecture

- Strictly speaking - it's a whole system thing
- study of the structure of computer hardware " requires a diverse set of systems \& circuit understanding
- languages \& operating systems
- high level organizational issues (our focus in CS6810)
- processor, cache, main memory, //0, networking/interconnect, storage
- analysis via tools such as simulation
- power, performance, energy efficiency, verification
- transistor circuits, wires, and fabrication technology
- layout, EDA tools, cooling, packaging, ...
" you can't be a wizard in one of these areas
without understanding the constraints and interfaces imposed by the other disciplines
- The profession:
- industry: design \& build the systems of the future " often w/ large teams of specialized wizards
- academic: study and explore new directions " few actually build things except as models via simulation

UJ) School of Computing	4	CS6810

A Snippet of Modern History

- Mechanical difference engine
- proposed in 1786 by J. H. Mueller
- 2 versions built by Charles Babbage in the 1820's
" image at right is a replica in the computer museum in Mtn. View, CA - Electronic computer
- ww2: army needed something to compute ballistics tables

- contract w/U Penn in 1943
- operational in 1946
" analog machine
" programmed by plugging cables into the right spot " Yown
- numerous analog machines follow " vacuum tubes, crystal diodes, ...

History II

- Stored program computer
- Concept: EDVAC report 1945 by John von Neumann " hence the von Neumann architecture tag
- Implementation
" Jun 1948 - Manchester Univ. experimental machine - "Baby" SSEM (small scale experimental machine)
- memory = Williams Cathode Ray Tubes
" First practical: EDSAC May 1949 (also done in the UK)
- memory $=$ delay-lines

Ul) School of Computing
University of Utah

Then Came Transistors ...

- First all transistor computer - MIT's Linc, TX-0, TX-2 - Wes Clark 1950's » led to networks, graphics, interactive computing	
- more than one transistor on a die - 1958 " Rob't Noyce and Gordon Moore @ Fairchild - later founders of Intel - first microprocessor Intel 4004 in 1971 " 10 um pMOS, 92 Kips, $\mathbf{7 4 0} \mathbf{~ K H z , ~ 4 - b i t ~ d a t a - p a t h , ~ B C D ~}$ " it's been a wild ride ever since	
(J) School of Computing	CS6810

CAGR Inflection Points

- Improvement
- consistent technology gain
- architecture less consistent
- Inflection points
- 1st 25 years: 25\% due to both
- late 70's uProcessors emerge
" 35\%
" + 17\% from architecture
- RISC, pipelining, ILP and multiple issue (a.k.a. super scalar)
" 16 years of Moore's law growth
2002 things slow to ~20\%
" 3 key hurdles: thermals, insufficient ILP, slow memory
DRAM improvement trends: $\mathbf{C A G R}=\mathbf{7 \%}$
latency hiding worked well untill 2002
- New agenda: TLP and DLP
" enter multi-threading and multi-core architectures
$\begin{array}{lll}\text { (U) School of Computing University of Utah } & 9 & \text { CS6810 }\end{array}$

Segments (cont'd)

- Netbook
- cheap, light, and a bigger screen than a cell phone " battery life is a key issue
- processor performance compromised for energy efficiency
- Laptop
- a bit heavier and more expensive
" more diversity in performance and energy efficiency than netbook
" processor and system cost: 2-5x netbook
- Desktop
" market rapidly slowing due to netbook, laptop, and server expansion
" with a network the screen, keyboard, and compute gizmo's need not be co-located
" diverse motherboard capability (performance, memory, etc.)
" \$50 - \$1000 processor, 5-10x more for system

School of Computing
University of Utah

Computer Classes/Market Segments

- Note
- today all classes are microprocessor based " not all microprocessors are the same
- even when they appear to be the same to the programmer
- also my classes are quite different than the text's
- Embedded (fastest growth segment)
- huge range: automotive, cell phones, ... large internet switches \rightarrow specialization
" CISCO EPS-1 already contains 192 core
" processors vary:
- 4-64-bit processors
price from a few cents to a few hundred dollars system cost from \$1 to \$1M
" typical differentiation
- typical user tends to not be the programmer
- provides a relatively fixed function or service
- hard or soft real time performance often required
$\begin{array}{lll}\text { U) } \\ \text { School of Computing } & 10 & \text { CS6810 }\end{array}$

Big Iron Segments

- Key additional difference
- high enhanced
" interconnect, main memory, and storage subsystems
- Compute servers
- usually a cluster of racks " holding blades
- similar to desktop motherboard
» lots of choices for storage subsystem
- Datacenter/Warehouse
- very large cluster of racks
" system cost from $\mathbf{\$ 1 0 0 K}$ to $\mathbf{\$ 1 0}$ 'sM
" redundant everything for high availability
" e.g. Google or the "Cloud"
- Supercomputer (single customer type, FPU focus)
- check out the top 500 list: httpi//top500.org
- system cost \$10-100M

School of Computing
University of Utah
12
CS6810

Computer Architecture

- Focus issues for CS6810
- 3 key components
" ISA (2 lectures from now - Appendix B)
" Organization
- high level structural aspects of various subsystems
- plpeline structure
- function unit structure
- processor structure
cache hierarchy structure
main memory structure
- note there are other subsystems that we'll get to in the $2^{\text {nd }}$ half - interconnect structure storage structure and technologie
" Hardware (only light coverage here)
- logic design, process, packaging, cooling, timing, wires ...
- this is an almost endless list

VLSI courses in analog and digital IC design should be next - If you intend to live on the HW side of architecture
(J) School of Computing

University of Utah
14

Intent of the Course

- Provide a foundation for future professional activity - at least 3 possible goals
" understanding the compute platform that you use
- key to achieving highly efficient code for SW types
- ISA and organization are what you care about
" research into new architectural options
- key academic role \& possible thesis area preparation
- ISA, organization, and high level understanding of hardware constraints will be needed
" design of new systems
- perhaps the ultimate relevance
- further courses will be needed to finish this process

VLSI \& embedded systems courses will be your next step

- all 3 will are important
- in much greater depth
- OK that's the sales pitch
- for why you should care

School of Computing
University of Utah
15

Tracking Trends

- Fast moving arena \& lengthy design process
" typical 5-year design schedule
" typical design team ~ 500 engineers
" year 1: architectural concept and simulation infrastructure development
" year 2: architectural optimization, validation - architecture freeze at the end of year 2
" year 3 \& 4: circuit design, floor-planning, and packaging - tape out at the end of year 4
" year 5
- refine process to achieve acceptable yields
test and validate fab'd chips
- build inventory since volume sales commence
- Note
" you need to design for a technology that doesn't exist when the design phase starts
- need to accurately predict what will be available

(U) School of Computing	16	CS6810

Technology Trends

- VLSI
- transistor density improves 35\%/yr
" due to process shrink
- there are some hidden dragon's here
- die size increases by 10-20\%/yr
- transistor budget/chip increases 40-55\%/yr
" today the limit is power rather than \# of T's (more on this later)
- DRAM
- capacity increases 40\%/yr
" access latency increases at only 7\%/yr however
- Disks get better in steps:
- capacity CAGR ranges from 30\% = 60\% " we're back to $\mathbf{3 0 \%}$ now
- latency virtually unchanged (for MHD's ~10ms)
" bandwidth significantly better however
" SSD's now on the scene with much better latency than MHD's

(U) School of Computing	17	CS6810

Bandwidth Optimization Results

Performance

- Bandwidth vs. Latency
- bandwidth is associated with throughput
- latency is the response time for a single transaction
- Usually you care about how fast your job runs
- for any job that takes more than a few seconds
- also depends on market segment
" latency critical for real time constraints
" throughput critical for data-center or supercomputer apps
- but your personal computer runs lots of processes too
- tends to blas throughput importance
- Power wall has changed the industry to throughput
- killer uP is now dead as is single thread performance " Intel cancels Tejas in 2004
- TLP, DLP, and multi-core
" throughput centric will persist (exception is embedded segment)
J) School of Computing

University of Utah

IC Scaling

- As feature size λ goes down
- transistor speed scales as $1 / \lambda$
- wire speed scales as α RC
" as wires get smaller - cross section decreases, \mathbf{R} increases - aspect ratio changing somewhat to compensate
- wires do not shrink as much as T's
" C goes down but not linearly
- plate C improves but sidewall is an issue
- sidewall C can be improved with process
- low-K dielectric and hot-wire air gap today
" wire speed for unrepeated wires is quadratic with length
- proper repeater spacing makes wire delay roughly linear
at the expense of increased power for the repeaters
- Key result
" wires are the problem (Ron Ho's PhD thesis is a great read)
" increasing contribution to power
" scaling poorly w.r.t. transistors

School of Computing
University of Utah
20

IC Process

- iTRS is a predictor
- industry consortium
» articulate what's needed to stay on Moore's curve
- $\mathbf{2 x}$ transistor count improvement every 2 years
- $1 /$ sqrt(2) $=.707$
" httpi//itrs.net
- look for the 2008 update
- it's not strictly accurate but a good predictor
" Intel has recently pushed up the pace
- History (check out that . 7 factor)
- 1997: 250nm
- 1999: 180nm
- 2001: 130nm
- 2003: 90 nm
- 2005: 65 nm
- now: 45 nm

SJ)		
University of Utah	21	cs6810

Power Fundamentals

- 2 components:

- active - power consumed when something is happening
- leakage - power consumed independent of activity
- $\mathbf{P}_{\text {total }}=\mathbf{P}_{\text {active }}+\mathbf{P}_{\text {leakage }}$
- Pactive $=\alpha$ CV²f 2
- hence linear with frequency
- Pleakage goes up 10x with every process step
- process \& circuit tricks have mitigated this significantly " how many one-trick ponies are in the stable
- additional $\sim 2 \mathrm{x}$ w/ every 10 C temperature dependence " also dependent on Vdd-Vth
" actual equation is quite hairy
- Voltage scaling
- quadratic benefit for $\mathbf{P}_{\text {active }}$
- problem for $\mathbf{P}_{\text {leakage }}$
- today there is little room for Vdd scaling School of Computing

University of Utah

The End of Silicon

- When is the question
- nothing lasts forever
" at some point the shrink will mean a transistor's components
will be smaller than a silicon atom
- clearly this can't work
- glass half full or empty predictions vary
" some see the sky falling now
" others say we can get to 6 or 7 nm
- but only if some current "unsolvables" get solved
- What's the alternative
- DNA soup
- quantum computing
- bigger problems or a solution - you choose
- For now and the foreseeable future
- silicon and CMOS
" several silicon varieties: strained, sol, ...
UJ) School of Computing
University of Utah $\quad 22 \quad$ Cs6810

Cost

- Affected by market, technology, and volume - WCT (whole cost transfer) varies w/ volume " tooling and fabrication set up is very expensive " fab line cost scales as (1/i) ${ }^{2}$
- Not that simple - what kind of cost?
- cost to buy - this is really price
- cost to maintain
- cost to upgrade - never known at purchase price
- cost to learn to use - Apple won this one for awhile
- cost of ISV software
- cost to change platforms - vendor lock not dominant today
- cost of a failure - Pandora's box
" see availability cost table Fig. 1.3 in your text
- Let's focus on hardware costs
" it's simpler

School of Computing
University of Utah
24

Cost of an IC

- More integration \rightarrow IC is bigger piece of the total

$$
\text { IC-cost }=\frac{\text { Die-cost }+ \text { Die-test-cost }+ \text { Die-package-cost }}{\text { Final-Test-Yield }}
$$

- DRAM prices have very small margins
- range from $\$ 20 / \mathrm{die}$ until end of life at $\sim \mathbf{2}$
" DRAM die are put on DIMMs (8-19/Dimm)
" you buy DIMMs
- IC's traditionally $\mathbf{2 5 - 5 0 \%}$ of WCT for desktop box
- monitors and external disks may actually dwarf this cost
- depends on system

U1) School of Computing
University of Utah
26

Die Cost
$\text { Cost-of-die }=\frac{\text { Cost-of-wafer }}{\text { Dies-per-wafer } \times \text { Die-yield }}$ $\text { Dies-per-wafer }=\frac{\pi \times(\text { Wafer-diameter } / 2)^{2}}{\text { Die-area }}-\frac{\pi \times \text { Wafer-diameter }}{\sqrt{2 \times \text { Die-area }}}-\text { Test-dies-per-wafer }$ square peg in round hole term $\text { Die-yield }=\text { Wafer-yield } \times\left(1+\left(\frac{\text { Defects-per-unit-area } \times \text { Die-area }}{\alpha}\right)\right)^{\alpha}$ - α depends on process - good estimate for α in 2006 is 4.0 - defects are very rare these days - yield is very near $\mathbf{1 0 0 \%}$ on a mature process
(U) School of Computing University of Utah 28 CS6810

Concluding Remarks

- It's important to keep several things in mind when a design decision is made
- cost and area issues
- totally new means new verification tactics " an increasing component of design cost
- power and performance trade-off
- What's the right metric
- depends on what you care about
- ideally you want more performance \& less power for the work that you care about
- Note
- power is an instantaneous, work independent metric
- consider
" $Q=$ energy x delay ${ }^{n}$ (more realistic measure of design quality) " adjust \mathbf{n} for your bias
embedded $\mathbf{n = 1}$ typical, $\mathbf{n = 2}$ often used for performance oriented
systems systems

School of Computing		
University of Utah	29	CS6810

[^0]: School of Computing
 University of Utah

