

Segments (cont'd)

» more diversity in performance and energy efficiency than netbook

market rapidly slowing due to netbook, laptop, and server

» with a network the screen, keyboard, and compute gizmo's need not be co-located

» diverse motherboard capability (performance, memory, etc.)

11

nance compromised for energy efficiency

• cheap, light, and a bigger screen than a cell phone

» battery life is a key issue

ssor perfe

• a bit heavier and more expensive

» processor and system cost: 2-5x netbook

» \$50 - \$1000 processor, 5-10x more for system

• pr

expansion

School of Computing University of Utah

Netbook

• Laptop

• Desktop

10

CS6810

CS6810

Intent of the Course	
Provide a foundation for future professional activity	•
 at least 3 possible goals 	
» understanding the compute platform that you use key to achieving highly efficient code for SW types 	
ISA and organization are what you care about	
» research into new architectural options	
 key academic role & possible thesis area preparation 	
 ISA, organization, and high level understanding of hardware constraints will be needed 	
» design of new systems	
 perhaps the ultimate relevance 	
 further courses will be needed to finish this process VL8) & embedded systems courses will be your next step 	
all 3 will are important _ In much greater depth	•
OK that's the sales pitch	
 for why you should care 	
NN School of Computing	-

Bandwidth Optimization Results

Micropr

10

Relative latency improvement

19

Latency improvement = andwidth improvement

100

CS6810

10.000

1000

100

elative

School of Computing University of Utah

Performance

18

CS6810

Power Fund	lamentals	
• 2 components:		
 active – power consumed wh 	en something is happening	
 leakage – power consumed li 	ndependent of activity	
 P_{total} = P_{active} + P_{leakage} 		
• Pactive = $\alpha CV^2 f$		
 hence linear with frequency 		
Pleakage goes up 10x with e	verv process step	
• process & circuit tricks have	mitigated this significantly	
» how many one-trick ponies a	are in the stable	
 additional ~2x w/ every 10 C 	temperature dependence	
» also dependent on Vdd-Vth		
» actual equation is quite hair,	У	
 Voltage scaling 		
 quadratic benefit for P_{active} 		
 problem for P_{leakage} 		
 today there is little room for 	Vdd scaling	
School of Computing University of Utah	23 CS68	10

Concluding Re	emarks
----------------------	--------

• It's important to keep several things in mind when a design decision is made · cost and area issues • totally new means new verification tactics » an increasing component of design cost • power and performance trade-off • What's the right metric - depends on what you care about · Ideally you want more performance & less power for the work that you care about • Note • power is an instantaneous, work independent metric · consider » Q = energy x delay" (more realistic measure of design quality) » adjust n for your blas
 • embedded n=1 typical, n=2 often used for performance oriented systems School of Computing University of Utah **CS6810** 29