# **Computer Architecture**

**CS/ECE 6810** 

#### **Today's topics:**

- ·course logistics & motivation
- ·computer architecture as a profession
- ·market segments
- technology scaling and cost

School of Computing University of Utah

CS6810

# **Introductory Material**

- A few tidbits on the instructor
- Pay close attention to the course web page
  - http://www.eng.utah.edu/~cs6810
  - it will change so keep up to date on what's there
- Why study computer architecture?
  - it's required for CS grad students
    - » OK I get that but will try to make it interesting anyway
  - for SW types:
    - » understanding the architecture  $\rightarrow$  maximize code performance
  - for HW types:
    - » essential understanding for the profession
  - rich area where contributions are badly needed
    - » one of which might be your thesis
  - current state of the art is in a wild time
    - » architecture changes directions see "badly needed"
    - » lots of job opportunities

School of Computing University of Utah

,

## **Artifacts of Rapid Change**

- Textbook
  - 4th edition is significantly more relevant than previous versions
    - » BUT it's now 2-3 years old and a lot has happened
    - » result: lectures will have some disagreements w/ the text
      - · reading the book will be necessary
      - attending the lectures will hopefully also be valuable
  - the basic issues in the text are still important
    - » bulk of course will focus on this material
  - tons of research literature
    - » not a requirement in this course but helpful to clarify or deepen your understanding
    - » the internet is your friend
      - · as is the University's subscription to digital libraries
        - IEEE Xplore is probably the most useful
        - ACM is a good 2<sup>nd</sup> choice



CS6810

# **Computer Architecture**

- Strictly speaking it's a whole system thing
  - study of the structure of computer hardware
    - » requires a diverse set of systems & circuit understanding
      - languages & operating systems
      - high level organizational issues (our focus in CS6810)
        - processor, cache, main memory, I/O, networking/interconnect, storage
      - · analysis via tools such as simulation
        - power, performance, energy efficiency, verification
      - · transistor circuits, wires, and fabrication technology
      - · layout, EDA tools, cooling, packaging, ...
    - » you can't be a wizard in one of these areas
      - without understanding the constraints and interfaces imposed by the other disciplines
- The profession:
  - industry: design & build the systems of the future
    - » often w/ large teams of specialized wizards
  - academic: study and explore new directions
    - » few actually build things except as models via simulation

School of Computing University of Utah

# **A Snippet of Modern History**

- Mechanical difference engine
  - proposed in 1786 by J. H. Mueller
  - 2 versions built by Charles Babbage in the 1820's
    - » image at right is a replica in the computer museum in Mtn. View, CA
- Electronic computer
  - WW2: army needed something to compute ballistics tables
  - contract w/U Penn in 1943
  - operational in 1946
    - » analog machine
    - » programmed by plugging cables into the right spot
    - » YOW!!
  - numerous analog machines follow
    - » vacuum tubes, crystal diodes, ...







CS6810

# **History II**

5

- Stored program computer
  - Concept: EDVAC report 1945 by John von Neumann
    - » hence the von Neumann architecture tag
  - Implementation
    - » Jun 1948 Manchester Univ. experimental machine
      - "Baby" SSEM (small scale experimental machine)
      - memory = Williams Cathode Ray Tubes
    - » First practical: EDSAC May 1949 (also done in the UK)
      - memory = delay-lines





CS6810

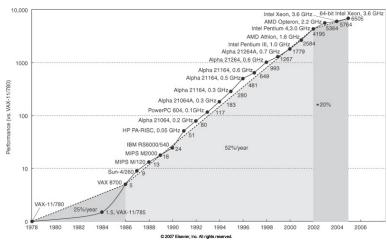
## Then Came Transistors ...

- First all transistor computer
  - MIT's Linc, TX-0, TX-2 Wes Clark 1950's
    - » led to networks, graphics, interactive computing





- Integrated circuit
  - more than one transistor on a die 1958
    - » Rob't Noyce and Gordon Moore @ Fairchild
       · later founders of Intel
  - first microprocessor Intel 4004 in 1971
    - » 10 um pMOS, 92 Kips, 740 KHz, 4-bit data-path, BCD
    - » it's been a wild ride ever since




7

CS6810

# **Unprecedented Improvement**

- Moore's surprising prediction in 1965 holds up
  - reasonably well so far



School of Computing University of Utah

8

## **CAGR Inflection Points**

- Improvement
  - consistent technology gain
  - architecture less consistent
- Inflection points
  - 1st 25 years: 25% due to both
  - late 70's uProcessors emerge
    - » 35%
    - » + 17% from architecture
      - RISC, pipelining, ILP and multiple issue (a.k.a. super scalar)
    - » 16 years of Moore's law growth
  - 2002 things slow to ~20%
    - » 3 key hurdles: thermals, insufficient ILP, slow memory
      - DRAM improvement trends: CAGR = 7%
        - latency hiding worked well until 2002
  - New agenda: TLP and DLP
    - » enter multi-threading and multi-core architectures



9

CS6810

# **Computer Classes/Market Segments**

- Note
  - today all classes are microprocessor based
    - » not all microprocessors are the same
      - ullet even when they appear to be the same to the programmer
  - also my classes are quite different than the text's
- Embedded (fastest growth segment)
  - huge range: automotive, cell phones, ... large internet switches → specialization
    - » CISCO EPS-1 already contains 192 core
    - » processors vary:
      - 4- 64-bit processors
        - price from a few cents to a few hundred dollars
        - system cost from \$1 to \$1M
    - » typical differentiation
      - · typical user tends to not be the programmer
        - provides a relatively fixed function or service
      - · hard or soft real time performance often required

School of Computing
University of Utah

CS6810

# Segments (cont'd)

- Netbook
  - cheap, light, and a bigger screen than a cell phone
    - » battery life is a key issue
      - processor performance compromised for energy efficiency
- Laptop
  - a bit heavier and more expensive
    - » more diversity in performance and energy efficiency than netbook
    - » processor and system cost: 2-5x netbook
- Desktop
  - market rapidly slowing due to netbook, laptop, and server expansion
    - » with a network the screen, keyboard, and compute gizmo's need not be co-located
    - » diverse motherboard capability (performance, memory, etc.)

11

» \$50 - \$1000 processor, 5-10x more for system



CS6810

# **Big Iron Segments**

- Key additional difference
  - high enhanced
    - » interconnect, main memory, and storage subsystems
- Compute servers
  - usually a cluster of racks
    - » holding blades
      - similar to desktop motherboard
    - » lots of choices for storage subsystem
- Datacenter/Warehouse
  - very large cluster of racks
    - » system cost from \$100K to \$10'sM
    - » redundant everything for high availability
    - » e.g. Google or the "Cloud"
- Supercomputer (single customer type, FPU focus)
  - check out the top 500 list: http://top500.org
  - system cost \$10-100M

School of Computing University of Utah

**CS6810** 

## **Addendum: Complex Embedded Systems**

- Key characteristic
  - some things programmable and some things not
    - » not: ASIC or IP blocks
- Example: iPhone
  - Single programmable ARM core
    - » integrated with ~50 IP blocks
      - each block is highly specialized (multiple blocks/chip)
        - ~100x improvement in energy-delay product





**Cell Phone Part** 

**Computer Part** 

Source: Anandtech



CS6810

# **Computer Architecture**

- Focus issues for CS6810
  - 3 key components
    - » ISA (2 lectures from now Appendix B)
      - » Organization
        - high level structural aspects of various subsystems
          - pipeline structure
            - function unit structure
            - processor structure
            - cache hierarchy structure
            - main memory structure
          - I/O & network interface
        - ullet note there are other subsystems that we'll get to in the  $2^{nd}$  half
          - Interconnect structure
        - storage structure and technologies
      - » Hardware (only light coverage here)
        - logic design, process, packaging, cooling, timing, wires ...
          - this is an almost endless list
          - VLSI courses in analog and digital IC design should be next

14

- If you intend to live on the HW side of architecture



## **Intent of the Course**

- Provide a foundation for future professional activity
  - at least 3 possible goals
    - » understanding the compute platform that you use
      - key to achieving highly efficient code for SW types
      - ISA and organization are what you care about
    - » research into new architectural options
      - key academic role & possible thesis area preparation
      - ISA, organization, and high level understanding of hardware constraints will be needed
    - » design of new systems
      - · perhaps the ultimate relevance
      - · further courses will be needed to finish this process
        - VLSI & embedded systems courses will be your next step
      - · all 3 will are important
        - in much greater depth
- OK that's the sales pitch
  - for why you should care



15

CS6810

## **Tracking Trends**

- Fast moving arena & lengthy design process
  - typical 5-year design schedule
    - » typical design team ~500 engineers
      - » year 1: architectural concept and simulation infrastructure development
      - » year 2: architectural optimization, validation
        - architecture freeze at the end of year 2
      - » year 3 & 4: circuit design, floor-planning, and packaging
        - tape out at the end of year 4
      - » year 5
        - refine process to achieve acceptable yields
        - · test and validate fab'd chips
        - build inventory since volume sales commence
- Note
  - you need to design for a technology that doesn't exist when the design phase starts
  - need to accurately predict what will be available

School of Computing
University of Utah

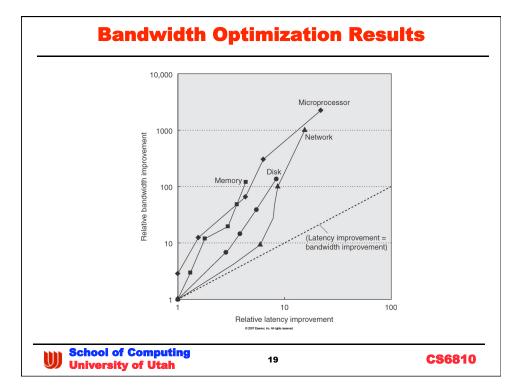
16

## **Technology Trends**

- VLSI
  - transistor density improves 35%/yr
    - » due to process shrink
      - there are some hidden dragon's here
  - die size increases by 10-20%/yr
  - transistor budget/chip increases 40-55%/yr
    - » today the limit is power rather than # of T's (more on this later)
- DRAM
  - capacity increases 40%/yr
    - » access latency increases at only 7%/yr however
- Disks get better in steps:
  - capacity CAGR ranges from 30% 60%
    - » we're back to 30% now
  - latency virtually unchanged (for MHD's ~10ms)
    - » bandwidth significantly better however
    - » SSD's now on the scene with much better latency than MHD's

17




CS6810

#### **Performance**

- Bandwidth vs. Latency
  - bandwidth is associated with throughput
  - latency is the response time for a single transaction
- Usually you care about how fast your job runs
  - for any job that takes more than a few seconds
  - also depends on market segment
    - » latency critical for real time constraints
    - » throughput critical for data-center or supercomputer apps
      - but your personal computer runs lots of processes too
      - tends to bias throughput importance
- Power wall has changed the industry to throughput
  - killer uP is now dead as is single thread performance
    - » Intel cancels Tejas in 2004
  - TLP, DLP, and multi-core
    - » throughput centric will persist (exception is embedded segment)

18

School of Computing
University of Utah



# **IC Scaling**

- As feature size  $\lambda$  goes down
  - transistor speed scales as 1/λ
  - wire speed scales as  $\alpha RC$ 
    - » as wires get smaller cross section decreases, R increases
      - aspect ratio changing somewhat to compensate
      - · wires do not shrink as much as T's
    - » C goes down but not linearly
      - · plate C improves but sidewall is an issue
      - sidewall C can be improved with process
        - low-K dielectric and hot-wire air gap today
    - » wire speed for unrepeated wires is quadratic with length
      - proper repeater spacing makes wire delay roughly linear
      - at the expense of increased power for the repeaters
- Key result
  - wires are the problem (Ron Ho's PhD thesis is a great read)
    - » increasing contribution to power
    - » scaling poorly w.r.t. transistors



20

#### **IC Process**

- iTRS is a predictor
  - industry consortium
    - » articulate what's needed to stay on Moore's curve
      - 2x transistor count improvement every 2 years
      - 1/sqrt(2) = .707
    - » http://itrs.net
      - · look for the 2008 update
  - it's not strictly accurate but a good predictor
    - » Intel has recently pushed up the pace
- History (check out that .7 factor)
  - 1997: 250nm
  - 1999: 180nm
  - 2001: 130nm
  - 2003: 90 nm
  - 2005: 65 nm
  - now: 45 nm



21

CS6810

#### The End of Silicon

- When is the question
  - nothing lasts forever
    - » at some point the shrink will mean a transistor's components will be smaller than a silicon atom
      - clearly this can't work
  - glass half full or empty predictions vary
    - » some see the sky falling now
    - » others say we can get to 6 or 7 nm
      - but only if some current "unsolvables" get solved
- What's the alternative
  - DNA soup
  - quantum computing
  - bigger problems or a solution you choose
- For now and the foreseeable future
  - silicon and CMOS
    - » several silicon varieties: strained, SOI, ...

School of Computing
University of Utah

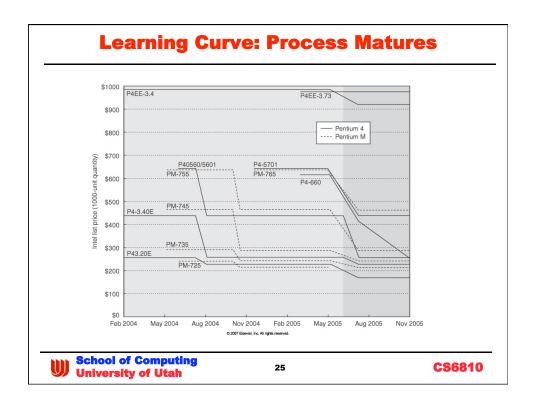
22

#### **Power Fundamentals**

- 2 components:
  - active power consumed when something is happening
  - leakage power consumed independent of activity
  - P<sub>total</sub> = P<sub>active</sub> + P<sub>leakage</sub>
- Pactive = αCV<sup>2</sup>f
  - hence linear with frequency
- Pleakage goes up 10x with every process step
  - process & circuit tricks have mitigated this significantly
    - » how many one-trick ponies are in the stable
  - additional ~2x w/ every 10 C temperature dependence
    - » also dependent on Vdd-Vth
    - » actual equation is quite hairy
- Voltage scaling
  - quadratic benefit for P<sub>active</sub>
  - problem for P<sub>leakage</sub>
  - today there is little room for Vdd scaling



23


CS6810

#### Cost

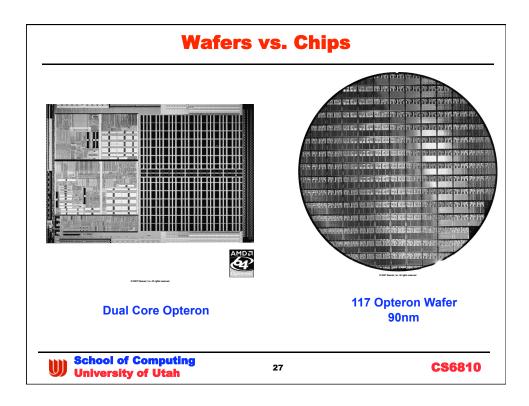
- Affected by market, technology, and volume
  - WCT (whole cost transfer) varies w/ volume
    - » tooling and fabrication set up is very expensive
    - » fab line cost scales as  $(1/\lambda)^2$
- Not that simple what kind of cost?
  - cost to buy this is really price
  - cost to maintain
  - cost to upgrade never known at purchase price
  - cost to learn to use Apple won this one for awhile
  - cost of ISV software
  - cost to change platforms vendor lock not dominant today
  - cost of a failure Pandora's box
    - » see availability cost table Fig. 1.3 in your text
- Let's focus on hardware costs
  - it's simpler



24



## Cost of an IC


More integration → IC is bigger piece of the total

$$IC\text{-}cost = \frac{Die\text{-}cost + Die\text{-}test\text{-}cost + Die\text{-}package\text{-}cost}{Final\text{-}Test\text{-}Yield}$$

- DRAM prices have very small margins
  - range from \$20/die until end of life at ~\$2
    - » DRAM die are put on DIMMs (8 -19/Dimm)
    - » you buy DIMMs
- IC's traditionally 25-50% of WCT for desktop box
  - monitors and external disks may actually dwarf this cost
  - depends on system



26



# $Cost-of-die = \frac{Cost-of-wafer}{Dies-per-wafer \times Die-yield}$ $Dies-per-wafer = \frac{\pi \times (Wafer-diameter/2)^2}{Die-area} - \frac{\pi \times Wafer-diameter}{\sqrt{2 \times Die-area}} - Test-dies-per-wafer$

square peg in round hole term

**Die Cost** 

- $\alpha$  depends on process
  - good estimate for  $\alpha$  in 2006 is 4.0
- defects are very rare these days
  - yield is very near 100% on a mature process



CS6810

# **Concluding Remarks**

- It's important to keep several things in mind when a design decision is made
  - cost and area issues
  - totally new means new verification tactics
    - » an increasing component of design cost
  - power and performance trade-off
- · What's the right metric
  - depends on what you care about
  - ideally you want more performance & less power for the work that you care about
- Note
  - power is an instantaneous, work independent metric
  - consider
    - »  $Q = energy \times delay^n$  (more realistic measure of design quality)
    - » adjust n for your bias
      - embedded n=1 typical, n=2 often used for performance oriented systems

School of Computing University of Utah

29