
Page 1

1 CS6810
School of Computing
University of Utah

Routing Algorithms

 Today’s topics:

Deterministic, Oblivious Adaptive, & Adaptive models

Problems:

 efficiency

 livelock

 deadlock

2 CS6810
School of Computing
University of Utah

Review

•  Network properties are a combination
  topology

  topology dependent routing algorithm
  switch micro-architecture

»  plus a bunch of things that are “sub-influences”
•  virtual channels

•  packet size

•  error recovery protocol

•  internal switch data- and control-path

•  Huge variation of approaches in the research literature
  goal = cover the breadth

»  depth is Pandora’s box
•  specialist expertise requires years not a semester

•  Terminology
  phit – physical unit – a per clock transfer

  flit – flow control unit

  packet – logical unit of transfer

3 CS6810
School of Computing
University of Utah

Addressing Modes

•  Routing model is dependent upon address spec’s
  source-routed

»  at each hop – packet field determines exit port
•  not dissimilar from ethernet table based routing

•  dynamic congestion independent possible

»  routing algorithm is simple – do what the source says

  absolute
»  topology dependent definition of the destination

•  topological basis for the address – e.g. NEWS

•  which way to go?
–  topology dependent

–  simple or complex calculation

–  twisted torus – complex

–  2D mesh – simple

  relative
»  topology dependent

•  relative path based on where I am now
–  GPS like (calculate here – destination) difference

–  simple example is 2D mesh – NEWS offset

4 CS6810
School of Computing
University of Utah

Routing Models

•  Note
  terminology varies over the years

»  this one is Dally-speak
•  from the excellent text by Dally & Towles

•  Deterministic
  fixed route between source-destination pairs

»  problem
•  no dynamic congestion avoidance

•  Oblivious
  dynamic path choice

  BUT – independent of load
»  e.g. static load balancing at source

•  Adaptive
  load based routing

»  TRICK: can local observation of load = global optimum?

Page 2

5 CS6810
School of Computing
University of Utah

Routing Model Issues

•  Deterministic
  what happens if something fails

»  need to determine failure point
•  how? – timeout

–  how long should you wait?

»  update routing tables
•  depending on topology – request/reply traffic may conflict

•  Oblivious & Adaptive
  same request/reply conflict

  alternate paths provide opportunity
»  topology dependent however

•  consider
–  quad mesh

–  fat-tree/folded Clos

–  n-dimensional networks

6 CS6810
School of Computing
University of Utah

Adaptive vs. Non-Adaptive

•  Deterministic routing
  guarantees in order packet delivery delivery

•  Oblivious and Adaptive routing
  packets may arrive out of order

•  Out of order issues
  reassembly required at end point

  packet header overhead
»  packet #, total packets this message fields required

»  packet overhead is an issue
•  look at ethernet

–  min packet size = 64 bytes

–  48 byte header for IP

–  48/64 = 75% overhead

–  max packet size = 1518 bytes

–  48/1518 = 3% overhead

»  BUT packet latency is an issue
•  route around congestion = out of order

–  tradeoffs?

7 CS6810
School of Computing
University of Utah

Routing Models II

•  At each hop = flow control dependent
  Store and forward

»  flow-control: packet based

»  receive entire packet, check correct, route

»  latency non-optimal but minimize occupancy

  Wormhole
»  flit != packet

•  digest header & route

»  packet may now occupy multiple switches
•  head of line blocking problem now has greater “extent”

  Virtual cut-through
»  packet based flow control

»  route decision doesn’t need to wait for entire packet to arrive

8 CS6810
School of Computing
University of Utah

Time/Space Viewpoint

Time-Space diagrams

H B B B T

H B B B T

H B B B T

C
ha

nn
el

0
1
2
3

C
ha

nn
el

H B B B T

H B B B T

H B B B T

0
1
2
3

Store & Forward

Virtual Cut-through

Page 3

9 CS6810
School of Computing
University of Utah

Routing Properties

•  Key issues
  deliver the packet to the prescribed destination

»  functional correctness issue

  deadlock avoidance
»  break

•  incremental claim & circular dependence

•  e.g. 5 philosophers problem

  livelock avoidance
»  avoid lots of action – no progress situation

•  harder to detect w/ local view

•  hence packet must carry history
–  e.g. ethernet “time to live” + end to end protocol capability

–  OR route without livelock possibility

  avoid hop specific “head of line blocking”
»  previous packet goes to destination X

»  next packet goes to destination Y
•  but can’t get through the current hop since X packet holds the

 buffer

10 CS6810
School of Computing
University of Utah

Head of Line Blocking

•  Enter virtual channels
  Jose Duato (UPC) book – definitive source

  basic idea
»  create packet dependent flow – call it a VC

»  each VC
•  separately buffered and routed

•  one flow blocked to different destination
–  let other flow proceed

–  still in order delivery unless adaptively routed

•  VC’s serve multiple purposes
  head of line blocking

  priority – may be age based
»  express channel for control packets

  deadlock avoidance
»  special “last VC”  deterministic

11 CS6810
School of Computing
University of Utah

Classic Stages

•  Route
  determine where packet is destined

•  VC allocation
  decide which VC packet is assigned to

»  how?
•  bump VC at ever hop

–  buffering overhead

•  bump when HOL blocking indicated
–  better

•  Switch allocation
  arbitrate for route through the datapath

»  switch µarch dependent

•  Switch traversal
  move packet to output port

»  output buffered?
•  speed matching

•  link retry

12 CS6810
School of Computing
University of Utah

Deadlock Avoidance

•  Critical needs
  avoid cycles

»  packet can’t come back to the same place

  avoid request reply inter-dependence
»  natural logical cycle

•  can’t incrementally request same resources

•  Topology dependent
  fat tree

»  no problem
•  req-response on different channels

  2D mesh or N-D topology
»  deterministic dimension order routing

  adaptive routing
»  more complicated

•  need to limit “how” you adapt

Page 4

13 CS6810
School of Computing
University of Utah

Deterministic 2D Mesh Example

•  Dimension order routing* - deadlock avoidance
  x before y (or vice versa)

»  separates request/reply traffic resource claiming
•  add VC’s for HOL blocking – no problem

14 CS6810
School of Computing
University of Utah

Deadlock Avoidance - Adaptive

•  Still need to avoid cycles
  enter turn model

»  dimension order routing adaptive variant

»  modification
•  never come back

–  incrementally pick 3 of NEWS in some order – problems w/ REQ & REPLY?

West-First North-Last Negative-First

consider – numbering paths
choose any +1 option

15 CS6810
School of Computing
University of Utah

Deadlock Avoidance VC’s

•  Separate VC’s into 2 groups
  request & reply

»  each one treated as a separate flow
•  deadlock

–  dimension order or turn model

•  OR
  randomly pick a bigger VC

»  to avoid head of line blocking

»  problems?
•  assign to last VC

–  dimension or turn model limited

16 CS6810
School of Computing
University of Utah

Deadlock Avoidance: N dimensions

•  Dimension order routing & deterministic
  same as with 2D

•  Turn model & adaptive
  a bit more complicated

»  simple load balancing scheme
•  Valiant – randomly route to another dimension on first hp

  requirement – avoid cycles

•  N-dimension addressing
  N element vector

»  binary N-cube = 2 nodes per dimension
•  example – CalTech Cosmic Cube

»  n-ary N-cube = n elements per dimension
•  example HyperX – to appear SC09

–  paper on the class web site

–  generalization of the flattened butterfly idea

•  examine this one since it’s a more general case

Page 5

17 CS6810
School of Computing
University of Utah

HyperX Topology

•  N dimensions
  switches in each dimension are fully connected

  next dimension – link to “mirrors”
»  L = # dimensions

»  Sn = # of switches in nth dimension

»  ignore K for now, T= # terminals per switch (direct network)

18 CS6810
School of Computing
University of Utah

HyperX Routing

•  Dimension ordered
  pick some order – it works

•  Adaptive = DAL (Whacko!)
  significant path diversity

»  source = N element index
•  aligned dimension: (source – destination) = 0

•  offset dimension: (source – destination) != 0

•  minimum path = # offset dimensions

»  take any offset dimension for minimal route
•  adaptive = deroute in some dimension

•  mark dimension as derouted
–  one deroute per dimension to avoid cycles

»  wait too long
•  move to VC1 for dimension order routing

19 CS6810
School of Computing
University of Utah

DAL: Load Latency Graphs

20 CS6810
School of Computing
University of Utah

What’s the Point?

•  Topology influences routing algorithm

•  Routing algorithm influences performance
  we’ve yet to consider switch micro-architecture

»  it’s an influence as well
•  power & latency impact

•  For now
  point is

»  deterministic doesn’t take consider congestion

»  oblivious – e.g. Valiant
•  load balances but doesn’t adapt to congestion

»  DAL
•  more complicated but dynamically adapts to congestion

  trade-off
»  more complex = extra overhead in lightly loaded networks

»  less complex = suffers under near-saturation loads

»  also observe
•  saturation point

Page 6

21 CS6810
School of Computing
University of Utah

Avoiding Livelock

•  Deterministic routing
  not a problem

•  Oblivious
  adapt once – also no problem

•  Adaptive routing
  key

»  need some sort of “damping” mechanism

  DAL
»  naturally damps

•  no return to aligned dimension

  common bottleneck
»  overloaded destination

•  DON’T put packets into orbit – e.g. Post Office

•  adapt early – R2/Fedex adaptive credit model

22 CS6810
School of Computing
University of Utah

Concluding Remarks

•  Topology and routing algorithm are joined at the hip
  what do you choose – depends

»  system size and load
•  over provisioning is common

•  “thin client” model doesn’t apply here
–  more true for bigger systems

•  Inherent Catch-22
  simple = fast under light loads

  complex = faster under heavy loads
»  how often does this happen?

•  Amdahl’s law applies

•  Bottom line
  as core counts/socket and # sockets increas in the “cloud”

»  commensurate increase in interconnect bandwidth will be
 required

»  cost = f(area, power, latency) will be increasingly important
•  topology and routing algorithm will have a big impact

•  switch µarch as well – next lecture

