Today's topics:
Some basic interconnect network concepts
Topology

Exploiting Concurrency

- In multiple cores or multiple sockets
 - communication takes center stage
- Ubiquitous networking
 - LAN & WAN space = Internet (you already know this stuff)
 - key is dealing with chaos
 - arbitrary machine platforms
 - big Endian vs. little
 - varying OS management layer
 - arbitrary topology
 - must support continual change
 - current user base 1.6 billion
 - result – general but inefficient
 - price to be paid for generality
 - layer model of who supports what
 - application, OS, NIC, router
 - 7 layer ISO model
 - which never is really implemented
 - but it's the basic idea
 - doesn't work in high performance parallel system world
 - where both performance and efficiency become critical
High Performance Systems

• One or multi-socket
 • some cost functions change but game is similar
 » note common trend
 • multi-socket approach continually moves on-socket
 – perhaps with some low-level implementation changes

• SAN – system area network
 • focus on performance, reliability, packaging, and efficiency
 » performance
 • minimum packet latency for an unloaded system
 • average packet latency
 – under various load factors
 » reliability
 • SAN’s consider failure as rare
 – should provide some fault tolerance
 – K’s to M’s of components \(\Rightarrow \) something is likely to fail
 » packaging
 • minimize SKU’s
 » efficiency
 • ED or ED^2 product combined metric considerations

SAN Difference

• Proprietary vs. standards based?
 • company X makes mondo parallel gizmo
 » see www.top500.org
 » they also create their own interconnect system

• Datacenters and the “Cloud” are a bit different
 • in-cabinet (in-rack)
 » possibly proprietary
 • top of rack switch
 – blade to blade efficient
 – convert to standard oriented comm between cabinets

• between cabinets
 » often more standards oriented
 • hypertransport
 • QPI
 • xGigE: \(x = 1/10/40/100 \)
 » switches
 • CISCO is the market leader
 – same switches for IP and SAN traffic
3 Essential Components

- **Topology**
 - graph of terminals and switches
 - focus today

- **Routing Algorithm**
 - how does a packet or message get from source to destination
 - heavy impact on lots of switch micro-architecture choices
 - buffering
 - virtual channels
 - flow control
 - deterministic, oblivious, adaptive
 - focus of the next lecture

- **Switch micro-architecture**
 - router/switch architecture
 - implement the routing algorithm
 - & support the traffic model

- **Key - all 3 are tightly coupled**

2 Variants: Network Type

- **Indirect networks**
 - 2 kinds of switches → 2 SKU’s
 - those that connect to terminals & switches
 - terminals
 - processors, storage, ...
 - send and receive messages/packets
 - other switches
 - that form the core
 - those that connect only to other switches
 - sometimes called “core” switches

- **Direct networks**
 - 1 type of switch → 1 SKU
 - each switch has some number of ports
 - some ports connect to other switches
 - some ports connect to terminals
2 Variants: Switching Type

- **Circuit switching**
 - create electrical path from source to destination
 - used in old telephone networks
 - super efficient
 - no intermediate header examination, buffering, etc.
 - real time performance was easy
 - busy vs. good to go
 - low throughput
 - no traffic interleaving
 - no intermediate header examination, buffering, etc.
 - real time performance was easy
 - busy vs. good to go
 - low throughput
 - no traffic interleaving

- **Packet switching**
 - break transaction up into packets
 - fixed or variable size
 - at each hop
 - examine destination, select route, send if route available
 - note extra work per hop ➔ hope count is an important metric
 - traffic interleaved ➔ increased resource utilization and throughput

Topology

- **Consider first**
 - heavy influence on other interconnect decisions
 - routing algorithm and switch architecture
 - **BUT**
 - except for that influence it might be the least important

- **Open ended game**
 - no way to cover all the options
 - e.g. describe all graphs
 - lots of tower of Babel effects
 - topologically donut and coffee cup are the same
 - as are fat-tree (Leiserson) & folded-Clos (Dally)

- **Hierarchy is possible**
 - different topologies may occur at different levels

- **Today**
 - focus on some basic options
Bus

- **Simplest and first interconnect**
 - we’ve seen adv. in snooping SMP configurations

- **Requires arbitration**
 - synchronous – can pipeline xfer & master
 - asynchronous – detect collision and backoff
 - Ethernet choice

- **Problem: long = slow**
 - scalability, signal integrity,

- **Improvements**
 - slotted bus – TDM style
 - wider to support multiple transactions

Some Cost Issues

- **Radix of the switch**
 - number of inputs & outputs
 - here we’ll consider bi-directional links
 - # = radix (sometimes called “arity”)
 - NOTE: some literature: radix:= # inputs + # outputs
 - question link is 1 or 2 channels
 - 1 channel requires arbitration like the bus
 - 2 unidirectional channel/link is obvious choice
 - config, cost and cabling errors get reduced

- **Switching Diameter**
 - worst case hop count
 - effectively a measure of what happens when locality is rare

- **ITRS constraints**
 - pin count and per pin bandwidth expected to be flat
 - choice
 - increase radix \(\rightarrow \) decrease link bandwidth \(\rightarrow \) decreased hops
 - tough choice
Performance Issues

• Bisection bandwidth
 • cut network in half – bandwidth between halves
 » for some topologies choice of half will yield different values

• Path diversity
 • how many shortest paths are there
 • utility will depend on routing algorithm

• Per link bandwidth
 • pin toggle rate * number of wires (or waveguides)
 • diversion
 » additional factor available with RF or optical channels
 • # of lambda’s
 • we’ll ignore these new options for now
 – on the horizon sure but both have some issues

Simple Direct Network

1. Simple Ring
 - arity = 2
 - SD = # or

2. Rings
 - Chordal Degree 4
 - arity = 4

3. Barrel Shifter
 - arity = 7
 - SD = # or log2n

4. Fully Connected
 - arity = 15
Simple Indirect/Direct Network

• **Star**

• **Weird radix**
 - center node could connect to others = direct
 - or be different from periphery = indirect
 » typically periphery is the NIC
 • good for LAN's
 • horrible for SAN's
 – congestion at center node
 – over provision center node is the common out
 » clear scaling problem

“Skinny” Trees

Simple e.g.
DDM1
(leaf fanout = 4)

Level connected e.g. NonVon

Sibling connected
e.g. Pepe
Space Filling Tree’s

• Note boards and chips are rectangular
 • even better if they are close to square

• H-tree
 ![H-tree diagram]

• uniform spacing of terminal nodes
 » often used for reducing skew in clock trees
 • or memories with multiple mats or chips
 » where broadcast to all is the norm

• regular wiring pattern
 » eases floor planning
 » important for on-chip – relatively useless in a warehouse

Fat Trees

• This one is tapered
 ![Fat tree diagram]

• Questions
 • what changes to support full bisection bandwidth?
 • how can a single switch type be used to construct a fat tree?
Leiserson’s Original Idea

- Routing
 - no LCA routing – always go to the top “core” level
 - random up choice
 - load balancing if you don’t really know what’s going on
 - deterministic down choice
- First real machine to employ this concept
 - TMI CM-5
- Now a common choice for supercomputers and data center interconnects
- How about
 - expansion?
 - cabling complexity?

2D Quad Meshes

- Unwrapped
- Illiac Mesh
- Torus
- Twisted Torus
Folded Torus

• Same mesh idea but keep wire length’s the same
 • Bill Dally idea

Hex Mesh

Continuous processing surface.
Each axis passes through each PE exactly once.

Only a single axis of the three are wrapped here for clarity.

Worst case switching diameter = n-1 for an E-n surface.

Sparse population simple - simply shorten the

E-3 surface contains 19 processing ele-
Oct/X Mesh

Note non-planar wiring – occurs in all meshes > hex

Motivating 3D Interconnects

• Harder to draw if you're a geek
 • where’s an artist when you need one?
• Real world is 3D
 • lots of modeling problems fall into a 3D space
 • consider Ocean
 » divide world into cubes
 • 6 neighbor cells
 » simulate via standard relaxation method
 • calculate inside values from boundary
 • calculate new boundary values
 • exchange boundary values with 6 neighbors
 • continue until
 – you or the machine dies
 – or you get the right/converged answer per time step
 • move to next time step
 • continue until you've had enough
3D Interconnects

~ Cubic Mesh

2 \times 3\text{-cubes} = 4 \text{cube}

3 \text{cube}

Replace each node with proper size cycle
e.g. 3-cube-connected-cycle

n-Dimensional Networks

\begin{itemize}
\item Several options
 \begin{itemize}
 \item start simple – binary n-cube
 \begin{itemize}
 \item no way I can draw them
 \item concept is simple
 \begin{itemize}
 \item each node has an n-bit index
 \item link to each node @ Hamming distance = 1
 \item radix = n
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \item real machines
 \begin{itemize}
 \item CalTech Cosmic Cube
 \item Intel IPSC
 \item nCube
 \end{itemize}
 \item fallen from grace
 \begin{itemize}
 \item wiring complexity and packaging prove too costly
 \item radix and link bandwidth trade-off problem
 \end{itemize}
\end{itemize}
Multistage Networks

- Basis – 2x2 Quine Switch
 - 4 states
 - note not all modes used in practice
 - consider the difference
 - asynchronous vs. synchronous traffic

Shuffle/Omega/Banyan Networks

- Tower of Babel syndrome
Shuffle (cont’d)

• **Routing simple**
 - binary destination value
 - 0 → top, 1 → bottom

• **Expanding**
 - no copy and add a stage
 » even though \(\log_2(T) \) stages required
 - unwire half of everything
 » add some stuff and rewire
 - blocking
 - complex wiring pattern
 » albeit regular – e.g. shuffle

• **Real? machines**
 - UofI Cedar
 - NYU Ultra and IBM RP-3
 » took advantage of combining options
 * broadcast & multi-cast options

Recursive Construction: Baseline Networks

• **Modularizing wiring via recursive structure**

![Diagram of recursive construction](image)

- Double Configuration to \(N \times N \) by adding \(N/2 \) base switches plus another \(N/2 \) box and wire them up
- Routing algorithm is the same
- So are the blocking and combining possibilities
- Also called: Butterfly Networks
16x16 Baseline Example

Benes Networks

- Back to back butterfly's

- Fold in the middle
 - What do you end up with?
Dilating Paths

- Increased cost but fault tolerant
 - to both failure and congestion

And Finally Crossbars

- True non-blocking behavior
 - no destination conflict then there is a path
 - problem N^2 switches
- What about scheduling
 - simple
- Reducing switch count
 - cross-bars of cross-bars
 - recursive game again
 - first done by Shannon's gang at AT&T
 - in particular Clos
 - scheduling
 - easy for synchronous traffic
 - harder for asych traffic
- 64×64 YARC
 - array of 8x8 of 8x8's
Concluding Remarks

• Lot's of topologies
 • this lecture presented some of the options
• But a lot of other things are important
 • routing algorithm
 » next
 • switch micro-architecture and examples
 » a week from now
• Key
 • complex space
 • increasing importance as we move to multi-
 » cores or sockets
• Great reference text
 • William J. Dally and Brian Towles, Principles and Practices of Interconnection Networks Morgan Kaufmann, 2004
• Research literature is more than extensive