
Page 1

1 CS6810
School of Computing
University of Utah

Consistency & TM

 Today’s topics:

Consistency models

 the “when” of the CC-NUMA game

Transactional Memory

 an alternative to lock based synchronization

 additional reading: paper from HPCA 2006

 on class web page

2 CS6810
School of Computing
University of Utah

Consistency

•  For DSM systems
  cache coherence

»  ensure multiple processors see a consistent memory view

»  does not answer “how consistent”
•  e.g. when are things truly consistent

  consistency models
»  there are several … but first a little detour

•  Programs share variables
  problem redefined

»  when does a write in some processor become visable to a read
 in another processor?

»  OR what properties must be enforced between reads and
 writes on different processors?

3 CS6810
School of Computing
University of Utah

Consider

•  Code sequences on 2 different processors

•  If A and B are cached on both processors
  problem – inherent race*

»  P1 can read 2 possible values written by P2
•  and vice versa

»  what if the correct last write invalidate from P2 is not seen by
 P1 before the read?

•  non-deterministic program

•  Question is whether or not this behavior should be
 allowed?
  and if so under what conditions?

P1: A= 0; (cycle 1)
 …..
 A=1; (cycle n)
 if (B==0) … (cycle n+1)

P2: B=0; (cycle 1)
 …..
 B=1; (cycle n)
 if (A==0) … (cycle n+1)

4 CS6810
School of Computing
University of Utah

Enter Consistency Models

•  Sequential consistency
  result of any execution must be the same

»  if memory accesses by each processor are kept in order

»  and the accesses of all processors are arbitrarily interleaved
•  note in previous code segments this won’t be the case

–  only way out here is for the programmer to synchronize the order

–  locks

  simplest implementation
»  sequence ALL memory transactions

»  for DSM this means
•  synchronizing all memory transactions at a global atomicity point

–  intractable due to performance impediments

  fence instructions (slightly better)
»  system wide flush of all pending memory references

  pro’s and con’s
»  + programmer sees a simple deterministic model

•  complicated - same as hazard solutions for pipelines Wax and RAW

»  - slow – hard to swallow in a parallel world

Page 2

5 CS6810
School of Computing
University of Utah

Program Synchronization

•  Programmer must specify order that matters
  locks, barriers, whatever  data race free behavior

  other non-determinacy is accepted
»  exception concurrent writer problem

•  such as CC-NUMA/DSM write-invalidate protocol

  obvious problems
»  additional complexity pushed onto the programmer

•  more heinous for fine-grain locks

»  synchronization = serialization
•  defeats performance advantage of parallelism

•  Relaxing consistency
  hardware allows some/most memory operations to happen

 out of order
»  several variants

»  programmer still has to control orderings that matter
•  critical sections, locks, …

6 CS6810
School of Computing
University of Utah

Book Terminology

•  Attempt to be compatible with your textbook

•  XY
  implies X must happen before Y

  candidate values for X & Y are READS and WRITES (R,W)

  hence options
»  RR

»  RW

»  WR

»  WW

•  Relaxing the RR constraint
  this is essentially sequential consistency

»  although your book doesn’t view it this way

  think about it
»  reordering reads doesn’t change RAW or Wax hazards

»  the problem happens when you promote either reads or writes
 over a write!!!

7 CS6810
School of Computing
University of Utah

Relaxed Consistency Models

•  TSO – total store ordering
  relax WR

  retain write ordering but allow reads to be reordered
»  note this changes RAW hazard behavior

»  fix: programmer synchronization

  benefit
»  write buffering works

»  lots of programs just want the latest value

  a.k.a. “processor consistency”
»  from a single processor view point

»  reordering reads doesn’t change anything

•  PSO – partial store order
  relax WW ordering ( WAW hazards don’t matter)

»  note this does NOT mean to the same location
•  requires total memory disambiguation

–  easy at main memory where physical addresses are used

•  independent writes can be reordered

8 CS6810
School of Computing
University of Utah

Relaxed Consistency II

•  Weak ordering & release consistency
  relaxing RW and RR ordering

»  meaning – don’t care about WAR or RAW hazards

  reality
»  if threads rarely interact

•  reduced synchronization  improved parallelism

•  memory system can respond out of order

•  big performance gain

•  Problem w/ relaxed consistency
  programmer needs to know what the compiler/hardware

 supports
»  may be able to specify the consistency model

»  bottom line
•  programmer needs to explicitly synchronize the things that matter

–  in a concurrent world this can’t be avoided anyway

Page 3

9 CS6810
School of Computing
University of Utah

What’s the Point?

•  Modes in today’s hardware
  allow various consistency models

  more relaxed is potentially faster
»  but programmer needs to know what to explicitly synchronize

»  and this depends on the mode

  vocabulary
»  changes a bit by vendor

»  previous terminology is the most common

10 CS6810
School of Computing
University of Utah

Enter TM

•  Transactional Memory
  original idea from TK@MIT

»  take a data base idea and apply it to the shared memory
 problem

  note that there are lots of variants
»  idea today is a shallow dive into the space

  basic idea
»  program: transaction consists of an atomic block

•  read stuff

•  do something

•  write stuff

»  if nothing else interacts w/ stuff then all is well
•  otherwise abort and don’t do anything destructive

–  e.g. write to memory

»  similar to svn
•  e.g. version management but with all or nothing success idea

11 CS6810
School of Computing
University of Utah

What Changes?

•  New TM model simplifies programming
  lock-unlock replaces the transaction begin-end

  programmer specifies the code sections that are viewed as
 atomic

»  hardware and/or system software insures this atomicity
 illusion

»  even though conflicts may occur

  adv: eliminates deadlock
»  lock-unlock is blocking

•  mutually dependent locks incrementally obtained?
–  5 dining philosopher problem – deadlock possible

–  key incremental claiming with no “give back”

»  transactions are non-blocking
•  go ahead and conflict but abort if you do then abort

–  effectively a “give back”

  disadv: if lots of aborts (stats show this is rare)
»  then lots of activity for little progress

•  power wasted for no productive reason

12 CS6810
School of Computing
University of Utah

TM Basics

•  Must provide
  atomicity

»  transaction succeeds or fails – all or nothing

»  no partial success allowed

  isolation
»  intermediate transaction state invisible to other transactions

 to the same or overlapping data space

  version management
»  keep track of which version is correct “latest”

•  handles simultaneous storage of new data – visible on commit

•  and old data which is retained if transaction aborts

  conflict detection
»  mechanism to determine whether interleaving transactions are

 happening

»  essentially a transaction consistency detector
•  signals overlap of this transaction write set with other transaction

 read or write set

Page 4

13 CS6810
School of Computing
University of Utah

Conflict Detection & Version Mgmt.

•  Key to the game

•  2 variants for version management
  eager – put the new value in place

»  restore old version on abort
•  implies old version stored in some log

  lazy – leave old value
»  replace with new values on commit

»  new values can be cached

•  2 variants of conflict management
  eager – detect offending loads or stores immediately

  lazy – defer detection until commit time

14 CS6810
School of Computing
University of Utah

Previous Work

•  TCC – trans. coherence & consistency - Hammond et al.
  lazy on both

»  very similar to DBMS approach using optimistic concurrency
 control (OCC)

»  stores new in L1 – overwrites in L2 @ commit time

»  detect conflict when other transactions commit

•  LTM – Large TM – Ananian et al.
  lazy version mgmt, eager conflict detection

»  old value in main memory, new values are cached
•  coherence protocol stores 2 different values at same address

–  e.g. delayed consistency with main mem

•  write miss stores to main mem hash table

»  conflict detection – invalidation of write set
•  complicated by overflow hash table

•  SW has to walk before knowing – potential problem

15 CS6810
School of Computing
University of Utah

Previous Work II

•  VTM – virtual TM – Rajwar et al.
  lazy version mgmt. & eager conflict mgmt.

•  UTM – unbounded TM – Ananian et al. (again)
  eager – eager

»  uses conservative concurrency control (CCC)

»  problem = complex
•  pointer per memory block

•  linked list log of both reads and writes

•  Ideal
  eager – eager but without the UTM overhead

  if the common case is that conflicts are rare
»  then eager – eager overhead is reduced since aborts are rare

»  Amdahl’s law appears again

16 CS6810
School of Computing
University of Utah

LogTM: Log-based Transactional
 Memory

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill &
 David A. Wood

Slide Credit: following slides from Kevin Moore’s presentation at
 HPCA06

(slightly edited)

Page 5

17 CS6810
School of Computing
University of Utah

Big Picture

•  (Hardware) Transactional Memory promising
  Most use lazy version management

»  Old values “in place”

»  New values “elsewhere”

  Commits slower than aborts

•  New LogTM: Log-based Transactional Memory
  Uses eager version management (like most databases)

»  Old values to log in thread-private virtual memory

»  New values “in place”

  Makes common commits fast!

  Allows cache overflow

  Aborts handled in software

18 CS6810
School of Computing
University of Utah

LogTM’s Eager Version Management

• Old values stored in the transaction log
 A per-thread linear (virtual) address space

 (like the stack)

 Filled by hardware (during transactions)

 Read by software (on abort)

• New values stored “in place”

• Current design requires hardware
 support

19 CS6810
School of Computing
University of Utah

12--------------

--------------23

34--------------

0

Transaction Log Example

00

40

C0

1000

1040

1080

•  Initial State

•  LogBase = LogPointer
•  TM count > 0

Data Block VA

Log Base

Log Ptr

TM count

1000

1000

1

0 0

R W

0 0

0 0

20 CS6810
School of Computing
University of Utah

1000 1048
--

34------------

12--------------

--------------23

34-------------- 0

Transaction Log Example

56--------------

00

40

C0

1000

1040

1080

•  Store r2, (c0) /* r2 = 56
 */
  Set W bit for block (c0)

  Store address (c0) and
 old data on the log

  Increment Log Ptr to
 1048

  Update memory

Data Block VA

Log Base

Log Ptr

TM count

1000

1

0 0

R W

0 0

0 1

c0

Page 6

21 CS6810
School of Computing
University of Utah

12--------------

--------------23

56--------------

Transaction Log Example

00

40

C0

1000

1040

1080

•  Commit transaction
  Clear R & W for all

 blocks

  Reset Log Ptr to Log
 Base (1000)

  Clear TM count

Data Block VA

Log Base

Log Ptr

TM count

1000

1000

0

0 0

R W

0 0

0 0

34------------ c0

--

0

0 0

1

1

1048

22 CS6810
School of Computing
University of Utah

1

1090

Transaction Log Example

12--------------

--------------23

34--------------

00

40

C0

1000

1040

1080

•  Abort transaction
  Replay log entries to

 “undo” the transaction

  Reset Log Ptr to Log
 Base (1000)

  Clear R & W bits for all
 blocks

  Clear TM count

Data Block VA

Log Base

Log Ptr

TM count

1000

1048

0

0 0

R W

0 0

0 0

c0 34------------

--

0

0 0

156--------------

1000

23 CS6810
School of Computing
University of Utah

Eager Version Management Discussion

•  Advantages:
  Fast Commits

»  No copying

»  Common case

  Unambiguous Data Values
»  Value of a memory location is the value of the last store (no

 table lookup)

•  Disadvantages
  Slow/Complex Aborts

»  Undo aborting transaction

  Relies on Eager Conflict Detection/Prevention

24 CS6810
School of Computing
University of Utah

LogTM’s Eager Conflict Detection

•  Most Hardware TM Leverage Invalidation Cache
 Coherence
  Add per-processor transactional write (W) & read (R) bits

  Coherence protocol detects transactional data conflicts

  E.g., Writer seeks M copy, seeks S copies, & finds R bit set

•  LogTM detects conflicts this way using directory
 coherence
  Requesting processor issues coherence request to

 directory

  Directory forwards to other processor(s)

  Responding processor detects conflict using local R/W bits
& informs requesting processor of conflict

Page 7

25 CS6810
School of Computing
University of Utah

MOESI Protocol

•  Extension of MESI protocol (local line state)
  M – “modified”

»  exclusive dirty, main memory not consistent

  O – “owned”
»  only 1 owner but other sharers can exist

•  may or may not be dirty

»  main mem may be inconsistent
•  adv: deferred update of main memory

  E – “exclusive clean”
»  main mem consistent

  S – “shared clean”
»  main mem consistent

  I – “invalid”

•  Directory global state change
  new/old: indicates whether main memory is consistent
  what others states?

26 CS6810
School of Computing
University of Utah

I [old] M@P0 [old]

I (--) [none] M (--) [old] M (-W) [new]

Write Miss Example

Directory

TM mode
Overflow

0
0

P1

I (--) [none]

TM mode
Overflow

0
0

1

•  P0 store
  P0 sends get exclusive

 (GETX) request

  Directory responds
 with data (old marked)

  P0 executes store
»  sets W

P0

GETX DATA

27 CS6810
School of Computing
University of Utah

M (-W) [new] M (-W) [new]

Get Shared w/ Existing M copy

Directory

TM mode
Overflow

0
0

P1

I (--) [none]

TM mode
Overflow

0
0

M@P0 [old]

1

•  In-cache transaction
 conflict
  P1 sends get shared

 (GETS) request

  Directory forwards to
 P0

  P1 detects conflict
(M state) and sends
 NACK

P0

GETS
Fwd_GETS

Conflict!
NACK

28 CS6810
School of Computing
University of Utah

M (-W) [new] I (--) [none]

M@P0 [old] Msticky@P0 [new]

Cache Overflow Victim

Directory

TM mode
Overflow

0
0

P1

I (--) [none]

TM mode
Overflow

0
0

1

•  Cache overflow
  P0 sends put exclusive

 (PUTX) request

  Directory
 acknowledges

  P0 sets overflow bit

  P0 writes data back to
 memory

P0

PUTX ACK DATA

1

Page 8

29 CS6810
School of Computing
University of Utah

Remote GETS after Overflow

Directory

I (--) [none]

TM mode
Overflow

0
0

P1

I (--) [none]

TM mode
Overflow

0
0

M@P0 [old]

1

•  Out-of-cache conflict
  P1 sends GETS request

  Directory forwards to
 P0

  P0 detects a (possible)
 conflict

  P0 sends NACK

P0

M (--) [old] M (-W) [new]

Msticky@P0 [new]

I (--) [none]

1

GETS
Fwd_GETS

Conflict! NACK

1

30 CS6810
School of Computing
University of Utah 30 2/15/06 HPCA-12

Commit

Directory

I (--) [none]

TM mode
Overflow

0
0

P1

I (--) [none]

TM mode
Overflow

0
0

M@P0 [old]

1

•  Quick commit
  P0 clears TM mode and

 Overflow bits

  Everything updated
 already

P0

M (--) [old] M (-W) [new]

Msticky@P0 [new]

I (--) [none]

1
0
0

31 CS6810
School of Computing
University of Utah

Msticky@P0 [new] S(P1) [new]

0
0
0

Deferred Clean

Directory

I (--) [none]

TM mode
Overflow

0 P1

I (--) [none]

TM mode
Overflow

0
0

•  Lazy cleanup
  P1 sends GETS request

  Directory forwards
 request to P0

  P0 detects no conflict,
 sends CLEAN

  Directory sends Data
 to P1

P0

M (--) [old] M (-W) [new] I (--) [none]

GETS
Fwd_GETS CLEAN DATA

S (R-) [new]

32 CS6810
School of Computing
University of Utah

 LogTM’s Conflict Detection w/ Cache
 Overflow

•  At overflow at processor P
  Set P’s overflow bit (1 bit per processor)

  Allow writeback, but set directory state to Sticky@P

•  At transaction end (commit or abort) at processor P
  Reset P’s overflow bit

•  At (potential) conflicting request by processor R
  Directory forwards R’s request to P.
  P tells R “no conflict” if overflow is reset

  But asserts conflict if set (w/ small chance of false positive)

Page 9

33 CS6810
School of Computing
University of Utah

Conflict Resolution

•  Conflict Resolution
  Can wait risking deadlock

  Can abort risking livelock
  Wait/abort transaction at requesting or responding proc?

•  LogTM resolves conflicts at requesting processor
  Requesting processor waits (using coherence nacks

/retries)

  But aborts if other processor is waiting (deadlock possible)
& it is logically younger (using timestamps)

•  Future: Requesting processor traps to software
 contention manager that decides who waits/aborts

34 CS6810
School of Computing
University of Utah

Evaluation

•  Simulated Machine: 32-way non-CMP
  32 SPARC V9 processors running Solaris 9 OS

  1 GHz in-order processors w/ ideal IPC=1 & private caches
  16 kB 4-way split L1 cache, 1 cycle latency

  4 MB 4-way unified L2 cache, 12 cycle latency

  4 GB main memory, 80-cycle access latency

  Full-bit vector directory w/ directory cache

•  Simulation Infrastructure
  Virtutech Simics for full-system function

  Magic no-ops instructions for begin_transaction()etc.

  Multifacet GEMS for memory system timing (Ruby only)
GPL Release: http://www.cs.wisc.edu/gems/

  LogTM simulator part of GEMS 2.0 (coming soon)

35 CS6810
School of Computing
University of Utah

Microbenchmark Analysis

•  Shared Counter
  All threads update

the same counter

  High contention

  Small Transactions

•  LogTM v. Locks
  EXP - Test-And-Test

-And-Set Locks with
 Exponential Backoff

  MCS - Software Queue
-Based Locks

 BEGIN_TRANSACTION();

 new_total = total.count + 1;
 private_data[id].count++;
 total.count = new_total;

 COMMIT_TRANSACTION();

36 CS6810
School of Computing
University of Utah

Shared Counter

•  LogTM (like other HTMs) does not read/write lock

•  LogTM has few aborts despite conflicts

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

Threads (on 32 Processors)

E
x
e
c
u

ti
o

n
 T

im
e
 (

in
 m

il
li
o

n
s
 o

f
c
y
c
le

s
)

EXP

MCS

LogTM

Page 10

37 CS6810
School of Computing
University of Utah

SPLASH-2 Benchmarks

Benchmark Input Synchronization
Barnes 512 Bodies Locks on tree nodes

Cholesky 14 Task queue locks

Ocean Contiguous partitions, 258 Barriers

Radiosity Room Task queue and buffer
 locks

Raytrace Small image (teapot) Work list and counter
 locks

Raytrace-Opt Small image (teapot) Work list and counter
 locks

Water N-Squared 512 Molecules barriers
False sharing
 optimization

38 CS6810
School of Computing
University of Utah

SPLASH2 Benchmark Results

Benchmark % Stalls % Aborts

Barnes 4.89 15.3

Cholesky 4.54 2.07

Ocean .30 .52

Radiosity 3.96 1.03

Raytrace-Base 24.7 1.24

Raytrace-Opt 2.04 .41

Water 0 .11

 Conflicts Less Common 

 Aborts 

39 CS6810
School of Computing
University of Utah

Conclusion

•  Commits far more common than aborts
  Conflicts are rare

  Most conflicts can be resolved w/o aborts
  Software aborts do not impact performance

•  Overflows are rare (in current benchmarks)

•  LogTM
  Eager Version Management makes the common case

 (commit) fast

  Sticky States/Lazy Cleanup detects conflicts outside the
 cache (if overflows are infrequent)

  More work is needed to support virtualization and OS
 interaction

•  False sharing has greater impact with TM

40 CS6810
School of Computing
University of Utah

Concluding Remarks

•  Highly concurrent machines are here
  trend is clear

•  Future programming model
  unclear

»  message passing – MPI, OpenMPI, MCAPI

»  some leverage from shared memory
•  like LogTM

»  other transactional memory models

•  Personal opinion
  better HW support for light overhead MP will win

  some coherent shared memory on socket likely
»  inflection point is unknown

