

Program Synchronization

- Programmer must specify order that matters
 - locks, barriers, whatever → data race free behavior
 - other non-determinacy is accepted
 - » exception concurrent writer problem
 - such as CC-NUMA/DSM write-invalidate protocol
 - obvious problems
 - » additional complexity pushed onto the program
 - more helnous for fine-grain locks » synchronization = serialization
 - defeats perform e advantage of parallel

Relaxing consistency

hardware allows some/most memory operations to happen out of order

5

- » several variants
- » programmer still has to control orderings that matter
- · critical sections, locks, ...

School of Computing University of Utah

CS6810

CS6810

mit

CS6810

(Hardware) Transactional Memory promising
Most use lazy version management
Old values "in place"
New values "elsewhere"
Commits slower than aborts
Commits slower than aborts
Uses eager version management (like most databases)
Old values to log in thread-private virtual memory
New values "in place"
Makes common commits fasti
Allows cache overflow
Aborts handled in software

Eager Version Management Discussion	
Advantages:	• Mos
Fast Commits	Co
» No copying	- /
» Common case	
 Unambiguous Data Values 	
» Value of a memory location is the value of the last store (no table lookup)	• Log
Disadvantages	
Slow/Complex Aborts	
» Undo aborting transaction	
Relies on Eager Conflict Detection/Prevention	
School of Computing 23 CS6810	

Benchmark	Input	Synchronization
Barnes	512 Bodies	Locks on tree nodes
Cholesky	14	Task queue locks
Ocean	Contiguous partitions, 258	Barriers
Radiosity	Room	Task queue and buffer locks
Raytrace	Small image (teapot)	Work list and counter locks
Raytrace-Opt	Small image (teapot)	Work list and counter
Water N-Squared	512 Molecules	optimization

SPLASH-2 Benchmarks

SPLASH2 Benchmark Results % Stalls Benchmark % Aborts Barnes ← Conflicts 89ess Common 5-3 Cholesky 4.54 ← Aborts² 9 Ocean .30 .52 Radiosity 3.96 1.03 Raytrace-Base 24.7 1.24 Raytrace-Opt 2.04 .41 Water 0 .11

38

CS6810

School of Computing University of Utah

39

School of Computing University of Utah

CS6810