Consistency & TM

Today’s topics:
Consistency models
the “when” of the CC-NUMA game
Transactional Memory
an alternative to lock based synchronization
additional reading: paper from HPCA 2006

on class web page

School of Computing

University of Utah 1 C86810

V)

Consistency

* For DSM systems
= cache coherence

» ensure multiple pi see a y view
» does not “how
* e.g. when are things truly consistent
= consistency models
» there are several ... but first a little detour
* Programs share variables
= problem redefined
» when does a write In some p! b to a read

In another processor?

» OR what propertles must be enforced between reads and
writes on different processors?

School of Computing

University of Utah 2 Cs6810

U)

Consider

* Code sequences on 2 different processors
P1: A= 0; (cycle 1) P2: B=0; (cycle 1)

B=1 (cycle n)
if (A==0) ... (cycle n+1)

A=1 (cycle n)
if (B==0) ... (cycle n+1)

* If A and B are cached on both processors
= problem - Inherent race*
» P1 can read 2 posslible values written by P2
« and vice versa

» what if the correct last write invalidate from P2 is not seen by
P1 before the read?

* non-deterministic program
¢ Question Is whether or not this behavior should be
allowed?
= and if so under what conditions?

School of Computing

Unlversity of Utah 3 CS6810

V)

Enter Consistency Models

* Sequentlal conslstency

= result of any execution must be the same
» i Y by each p are kept In order
» and the of all pi are arblitrarily Interleaved
* note In previous code segments this won’t be the case

- only way out here Is for the programmer to synchronize the order
- locks

= simplest implementation
» seq ALL vt i
» for DSM this means
. g all

- due to
= fence instructions (slightly better)
» system wide flush of all pendi y
= pro’s and con’s
» * prog sees a si ic model
+ complicated - same as hazard solutions for plpelines Wax and RAW
» = slow - hard to swallow In a parallel world

at a global point

School of Computing

Unlversity of Utah 4 CS6810

V)

Page 1

Program Synchronization

* Programmer must specify order that matters
= locks, barriers, whatever 2 data race free behavior
= other d i y is P
» pti Tont writer pi
* such as CC-NUMA/DSM write-Invalldate protocol
= obvious problems
» additional pushed onto the p
* more helnous for fine-grain locks
» synchronization = serlallzation

of

* Relaxing consistency
= hardware allows some/most memory operations to happen
out of order
» several varlants
» programmer still has to control orderings that matter
« critical sectlons, locks, ...

School of Computing

University of Utah s C86810

V)

Book Terminology

* Attempt to be compatible with your textbook
¢ XY
= Implies X must happen before Y
= candidate values for X & Y are READS and WRITES (R,W)
= hence options
» R9R
» ROW
» W3R
» WOW
* Relaxing the R R constraint
= this Is essentlally sequentlal consistency
» although your hook doesn’t view It this way
= think about It
» reordering reads doesn’t change RAW or Wax hazards

» the p happ when you p te either reads or writes
over a writelll
School of Computing
U] University of Utah s Cs6810

Relaxed Consistency Models

* TSO - total store ordering

= relax W2R

= retaln write ordering but allow reads to be reordered
» note this RAW b
» fa prog y

= benefit

» write buffering works
» lots of programs Just want the latest value
= a.k.a. “p ist y”
» from a single processor view point
» reordering reads doesn’t change anything
* PSO - partial store order
= relax W>W ordering (9 WAW hazards don’t matter)
» note this does NOT mean to the same location
* requires total memory disambiguation
- easy at maln memory where physical addresses are used
* Independent writes can be reordered

School of Computing

University of Utah 7 CS6810

V)

Relaxed Consistency 11

* Weak ordering & rel Ist Y
= relaxing R9>W and R9R ordering
» meaning - don’t care about WAR or RAW hazards
= reality
» if threads rarely interact
. y > P! [
* memory system can respond out of order
* big performance gain
* Problem w/ relaxed consistency
= programmer needs to know what the compiler/hardware
supports
» may be able to specify the consistency model
» bhottom line

. pi needs to Yy the things that matter
- In a concurrent world this can’t be avolded anyway

School of Computing

Unlversity of Utah 8 CS6810

V)

Page 2

What’s the Point?

¢ Modes in today’s hardware

= allow various consistency models

= more relaxed is potentially faster
» but programmer needs to know what to explicitly synchronize
» and this depends on the mode

= vocabulary
» changes a bit by vendor
» previous terminology is the most common

School of Computing

University of Utah ° C86810

V)

Enter TM

* Transactional Memory
= original idea from TK@MIT

» take a data base Idea and apply It to the shared memory
problem

= note that there are lots of variants
» idea today is a shallow dive into the space
= haslc Ildea

»

ists of an at block

progl
* read stuff
+ do something
* write stuff
» I nothing else Interacts w/ stuff then all Is well

+ otherwise abort and don’t do anything destructive

- @.g. write to memory

» simlilar to svn
* e.g. version management but with all or nothing success Idea

School of Computing

University of Utah Cs6810

10

U)

What Changes?

* New TM model simplifies programming
pl the t tion begin-end
= programmer specifles the code sectlons that are viewed as
atomlic
» h and/or
illusion
» even though conflicts may occur
= adv: eliminates deadlock
» lock-unlock is blocking
. locks
- Sdining -
- key Incremental claiming with no “glve back”
» t ti are ing
+ go ahead and conflict but abort If you do then abort
- effectively a “give back”
= disadyv: If lots of aborts (stats show this Is rare)
» then lots of ty for little prog
+ power wasted for no productive reason

= lock. Tock

hlock

School of Computing

Unlversity of Utah " CS6810

V)

TM Basics

¢ Must provide
= atomicity
» transaction succeeds or falls - all or nothing
» no partlal success allowed
= isolation

» inter state i to other transactions
to the same or overlapping data space
= version management
» keep track of which version is correct “latest”
. age of new data - visible on commit
+ and old data which Is retained If transaction aborts

= conflict detection

» mechanism to determine r] are
happening
» ya . y detect:
. of this write set with other transaction

read or write set

School of Computing

University of Utah CS6810

12

V)

Page 3

Conflict Detection & Version Mgmt.

* Key to the game
¢ 2 variants for version management
= eager - put the new value In place

» restore old version on abort
+ Implies old verslon stored In some log

= lazy - leave old value
» replace with new values on commit
» new values can be cached
¢ 2 variants of conflict management
= eager - detect offending loads or stores Inmediately
= lazy - defer detection until commit time

School of Computing

University of Utah 13 C86810

V)

Previous Work

* TCC - trans. coherence & consistency - Hammond et al.

= lazy on both
» very to DI
control (OCC)
» stores new In L1 - overwrites In L2 @ commt time
» detect conflict when other transactions commit
e LTM - Large TM - Ananian et al.
= lazy version mgmt, eager conflict detection
» old value in main 'y, new are
+ coherence protocol stores 2 different values at same address
- evg. delayed consistency with maln mem
« write miss stores to main mem hash table
» conflict detection - Invalldation of write set
+ complicated by overflow hash table
* SW has to walk before - P!

BMS app h using op tic rency

School of Computing

University of Utah 14 Cs6810

U)

Previous Work Il

¢ VTM - virtual TM - Rajwar et al.
= lazy version mgmt. & eager conflict mgmt.
¢ UTM - unbounded TM - Ananian et al. (again)
= eager - eager
» uses vative Tency t
» problem = complex

« pointer per memory block
« linked list log of both reads and writes

1 (€CC)

* Ideal
= eager - eager but without the UTM overhead
= if the common case is that conflicts are rare
» then eager - eager overhead Is reduced since aborts are rare
» Amdahl’s law appears again

School of Computing

Unlversity of Utah 18 CS6810

V)

LogTM: Log-based Transactional
Memory

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill &
David A. Wood
Slide Credit: following slides from Kevin Moore’s presentation at
HPCA06
(slightly edited)

School of Computing

Unlversity of Utah 16 CS6810

V)

Page 4

Big Picture

¢ (Hardware) Transactional Memory promising
= Most use lazy version management
» Old values “In place”
» New values “elsewhere”
= Commits slower than aborts
* New LogTM: Log-based Transactional Memory
= Uses eag i g t (like most databases)
» Old values to log In thread-private virtual memory
» New values “in place”
= Makes common commilts fast!
= Allows cache overflow
= Aborts handled in software

School of Computing

University of Utah 7 C86810

V)

LogTM’s Eager Version Management

* Old values stored in the fransaction log

= A per-thread linear (virtual) address space
(like the stack)

= Filled by hardware (during transactions)
= Read by software (on abort)
* New values stored “in place”

e Current design requires hardware
support

School of Computing

University of Utah 18 Cs6810

U)

Transaction Log Example

. VA Data Block R W
 Initial State
* LogBase = LogPointer 0 T —— Bin
e TM count >0
w0 | P 23][]
co Hflmms=m==s==m==c E] E]

Log Base

Log Ptr

TM count

School of Computing

Unlversity of Utah 19 CS6810

V)

Transaction Log Example

VA Data Block R W
e Store r2, (c0) /* r2 = 56
*l
» Set W bit for block (¢0) *° [2T L[]
= Store address (c0) and
old data on the log 40 | [emmmemememenes 23 (][9]
= Increment Log Ptr to
1048 [—— E])
= Update memory

Log Base
Log Ptr

TM count

School of Computing

Unlversity of Utah 20 CS6810

U]}

Page 5

Transaction Log Example

VA

Data Block R W

LI
njE|

¢ Commit transaction
= Clear R & W for all
blocks

00 12-mmmmmmmmmme

= Reset Log Ptr to Log
Base (1000) 0

= Clear TM count

co 56—

Log Base

Log Ptr

TM count

School of Computing
University of Utah

V)

21 CS86810

Transaction Log Example

VA Data Block R W

* Abort transaction

= Replay log entries to
“undo” the transaction *° R

= Reset Log Ptr to Log
Base (1000) 0

= Clear R & W bits for all
blocks co

= Clear TM count

Log Base

Log Ptr

TM count

School of Computing
University of Utah

U)

22

Cs6810

Eager Version Management Discussion

* Advantages:
= Fast Commits
» No copying
» Common case
= Unambiguous Data Values

» Value of a memory location is the value of the last store (no
table lookup)

* Disadvantages
= Slow/Complex Aborts
» Undo aborting transaction
= Relies on Eager Conflict Detection/Prevention

School of Computing

Unlversity of Utah 23 CS6810

V)

LogTM’s Eager Conflict Detection

* Most Hardware TM Leverage Invalldation Cache
Coherence

= Add per-pr tr tlonal write (W) & read (R) bits

= Coherence protocol detects transactional data conflicts

= E.g., Writer seeks M copy, seeks 8 coples, & finds R bit set
* LogTM detects conflicts this way using directory

coherence

= Requesting pr
directory

= Directory forwards to other processor(s)

= R ding pr detects conflict using local R/W bits
& Informs requesting processor of conflict

1 N

request to

School of Computing

Unlversity of Utah 24 CS6810

U]}

Page 6

MOESI Protocol

* Extension of MESI protocol (local line state)
= M - “modified”
» exclusive dirty, maln memory not consistent
= O - “owned”
» only 1 owner but other sharers can exist
* may or may not be dirty
» maln mem may be Inconslistent
« adv: deferred update of main memory

= E - “excluslve clean”

» main mem consistent
= 8§ - “gshared clean”

» maln mem conslstent

Write Miss Example

* PO store

= PO sends get exclusive
(GETX) request
= Directory responds
with data (old marked)
= PO executes store
» sets W

([weso a1)

GETX

= I - “Invalld” PO Tgn rr:fclade P1 Tgn rr:f(lade [0]
* Directory global state change verflow [0] R 0]
= new/old: Indicates whether maln memory Is consistent M (-W) [new] I l I (--) [none] I
= what others states?
School of Computing School of Computing
W) university of Utah 28 Cs6810 W) university of Utah 28 Cs6810
Get Shared w/ Existing M copy Cache Overflow Victim
¢ In-cache transaction * Cache overflow
confiict = PO sends put exclusive
= P1 sends get shared (PUTX) request
(GETS) request Directory * Directory Directory
* Directory forwards to acknowledges
9 [0 writes duta back [1.0850 tnow
« P1 detects conflict MEEOR[o1d) « PO writes data back to M,.1,@P0 [new]
(M state) and sends memory
NACK GETS
Fwd_GETS PUT AcK DATA
PO TM mode E] P1 TM mode @ PO TM mode P1 TM mode @
Overflow [0] Overflow [0] Overflow Overflow [0]
[() tnone1] (1 () tnone1 |
S
j\/\ionﬂict!
School of Computing NACK School of Computing
W university of utah = cses10 W) university of Utah e Cs6810

Page 7

Remote GETS after Overflow

¢ Out-of-cache conflict
= P1 sends GETS request
. I:E(rrctory forwards to

Directory

Commit

¢ Quick commit
= PO clears TM mode and

Directt
= PO detects a (possible) E?rvt;ftll‘:lw b“’J L ISy
conflict " el ng up
- PO sends NACK already M,eice,@P0 [new]
GETS
Fwd_GETS
PO TM mode P1 TM mode @ PO TM mode @ P1 TM mode @
Overflow Overflow [0] Overflow|[0 | Overflow [0]
S
NACM\/\FCOMIM!
School of Computing School of Computing
W) university of Utah 2 cses10 W) 2§506sity of Utah 3030 HPCA-12 csea10
LogTM’s Conflict Detection w/ Cache
Deferred Clean 9 Pl i
« Lazy cleanup * At overflow at processor P
« P1 sends GETS request = Set P’s overflow bit (1 bit per processor)
R Directo:yt fo;vga rds = Allow writeback, but set directory state to Sticky@P
request to Directory " "
« PO detects no conflict, o At ::;s‘a::::e ::‘: (tl::tmmlt or abort) at processor P
(DI ' -
= Directory sends Data
to P1 i * At (potential) conflicting request by processor R
GETS = Directory forwards R’s request to P.
Fwd_GETS = P tells R “no conflict” If overflow Is reset
= But asserts conflict if set (w/ small chance of false positive)
PO TM mode @ P1 TM mode @
Overflow [0] Overflow [0]
I (--) [none] | [s (-) [new] |
School of Computing School of Computing
W) university of Utah 3 €s6810 U)] 32

University of Utah CS6810

Page 8

Conflict Resolution

* Conflict Resolution
= Can wait risking deadlock
= Can abort risking livelock
= Wait/abort t tion at

o

q ting or P ing proc?

* LogTM resolves conflicts at requesting processor

= Requesting pr waits (using coherence nacks
Iretries)

= But aborts If other processor Is walting (deadlock possible)
& it is logically younger (using ti tamps)

¢ Future: Requesting processor traps to software
contention manager that decides who waits/aborts

Evaluation

!”J School of Computing

University of Utah 33 C86810

* Simulated Machine: 32-way non-CMP
= 32 SPARC V9 processors running Solaris 9 0S
= 1 GHz in-order processors w/ ideal IPC=1 & private caches
= 16 kB 4-way split L1 cache, 1 cycle latency
= 4 MB 4-way unified L2 he, 12 cycle lat
= 4 GB main y, 80-cycl lat
= Full-bit vector directory w/ directory cache
¢ Simulation Infrastructure
= Virtutech Simics for full-system function
= Maglc no-ops Instructlons for begin_transaction () etc.

= Multifacet GEMS for memory system timing (Ruby only)
GPL Release: http:/www.cs.wisc.edu/gems/

* LogTM simulator part of GEMS 2.0 (coming soon)

School of Computing
!DJ University of Utah 34 Cs6810

Microbenchmark Analysis

¢ Shared Counter

= All threads update
the same counter

= High contention
= Small Transactions

BEGIN_TRANSACTION () ;

new_total = total.count + 1;
private_data([id].count++;
total.count = new_total;

COMMIT_TRANSACTION () ;

* LogTM v. Locks
= EXP - Test-And-Test
-And-Set Locks with
Exponential Backoff
= MCS - Software Queue
-Based Locks

Shared Counter

mj School of Computing - CS6810

University of Utah

®
3

~
S

@
3

w
3

EXP
—8—MCS
LogTM

N
S

/

N
S

[5 10 15 20 25 30 35
Threads (on 32 Processors)

Execution Time (in millions of cycles)

)

o

LogTM (llke other HTMs) does not read/write lock
LogTM has few aborts desplite conflicts

@J School of Computing 36 CS6810

University of Utah

SPLASH-2 Benchmarks

SPLASH2 Benchmark Results

Benchmark Input Synchronization Benchmark % Stalls % Aborts
Barnes 512 Bodies Locks on tree nodes Barnes & Conflick8%ss Commoh5-3
Cholesky 14 Task queue locks Cholesky 454 | < Abort2.07
Ocean Contiguous partitions, 258 | Barriers Ocean 30 52
Radiosity Room Task queue and buffer Radiosity 3.96 1.03
locks
Raytrace Small image (teapot) Work list and counter Raytrace-Base 247 1.24
locks
Raytrace-Opt Small image (teapot) Work list and counter Raytrace-Opt 2.04 41
False sharing i
Water N-Squared 512 Molecules optimization Water 0 "
School of Computing School of Computing
W) university of Utah a7 €$6810 W) university of Utah 38 €$6810
Conclusion Concluding Remarks
* Commits far more common than aborts * Highly concurrent machines are here
= Conflicts are rare = trend is clear
= Most conflicts can be resolved w/o abhorts ¢ Future programming model
= Software aborts do not Impact performance = unclear
¢ Overflows are rare (in current benchmarks) » message passing — MPl, OpenMPI, MCAPI
 LogTM » some | ge from y
« like LogTM
= Eager V. t L the case » other
(commit) fast o ¥
« Sticky States/Lazy Cleanup detects conflicts outside the * Personal opinion
cache (if overflows are infrequent) = better HW support for light overhead MP will win
= More work is needed to support virtualization and 0S = some coherent sh d y on ket llkely
Interaction » inflection point is
* False sharing has greater Impact with TM
School of Computing 30 CS6810 School of Computing %0 CS6810

V)

University of Utah

V)

University of Utah

Page 10

