

6

CS6810

Latency ala SGI Origin O3K

• 500 MHz CPU

• model lacks contention and occupancy effects

» e.g. measured unloaded – hence best case

» DSM has striking impact on communication load

Characteristic	CPU clocks <= 16 PE's	CPU clocks 17-64 PE's
Cache Hit	1	1
Miss to Local Memory	85	85
Remote Miss served by Home	125	150
Remote Miss served by Remote \$ (known as a 3-hop miss)	140	170

 more of an interconnect property than an instruction set issue » bus hold bus after read, modify if unlocked, release bus problems
 – holding bus increases bus bottleneck likelihood » distributed interconnect Test & Set instruction • read value but set location to 1 ($1 \rightarrow$ locked) » less occupancy than RMW » if return value is 1 then previous lock exists so try again other variants » swap: exchange register value with a memory location School of Computing University of Utah

25

Lock Algorithm Goals Low latency quick when not contention - slower if there's competition - fact of life Low occupancy minimize amount of interconnect traffic • Scalability • no worse than linear traffic and latency increase Low storage overhead • minimize meta-data • Fairness · hard to be truly fair • redefine as starvation free » e.g. guarantee that requester will never wait forever School of Computing University of Utah 26 **CS6810**

CS6810

More Advanced Goals

- Reduced contention?
 - need some back-off model to desynchronize
 - » e.g. ethernet exponentional back-off idea
- On lock release
 - #1 have only one waiting process try for the lock
 - » also reduces contention
 - #2 have only one waiting process incur a read miss
- Enter more advanced protocols
 - ticket lock does #1
 - array based lock does both
 - both are fair in that they effectively create a FIFO grant order

29

School of Computing University of Utah

CS6810

Ticket Lock • Take a number each process reads lock and gets next number » from a number serving variable » next requester invalidates you but you have your number read the "now serving" variable » normal reads so no invalidation until the number changes » read your number then go • release » update the now-serving number » "fetch & increment" • one instance of fetch & op hardware support optimization » delay next read based on difference between • your number and "now serving" variable School of Computing University of Utah 30 CS6810

Implications for Software	Concluding Rema
 Computation phases maximize locality and minimize interconnect traffic Data allocation pad to minimize faise sharing & align on cache line boundary 	 For large parallel machines DSM may have become extinct SUN was the last to go SUN was the last to go IBM, Cray, HP, Dell, move to message
School of Computing University of Utab 33 CS6810	University of Utab 34

nct to message passing power is saved

Remarks

CS6810