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Multiprocessors II: CC-NUMA DSM 

 Today’s topics: 

DSM cache coherence 

 the hardware stuff 

 what happens when we lose snooping 

 new issues: global vs. local cache line state 

  enter the directory 

 issues of increasing the physical extent of the 
  system 

Synchronization basics 

 the software stuff 
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CC-NUMA for Large Systems 

•  Bus clearly doesn’t scale 
  so replace it with a scalable interconnect 

  similar goals 
»  shared memory and the same ease of use issues 

  similar problems 
»  coherence and consistency 

•  New problems 
  lose bus as the atomicity/”decider” point 

»  need to replace it with something else 
•  directory 

  multi-path communication 
»  longer delays and potential network transaction reordering 

  main memory is now distributed – e.g. DSM 
»  need to figure out where to look for the appropriate copy 

  deadlock and livelock 
»  by product of interconnection network and distributed

 environment 
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Directory Concept 

•  Atomicity 
  bus becomes a piece of memory somewhere 

»  a.k.a. a directory  

  coherence entity is still a cache line 
»  could be a page but false sharing would be a problem 

  new state model 
»  local state: kept in the cache holding a copy 

»  global state: kept in the directory  
•  who is sharing and in what form 

•  Flat main-memory 
  address high-order bits specify location  

»  “home for the line” – associated directory 
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Memory Assist 

•  2 transaction types 
  directory vs. memory 

»  shared memory reference  directory 

»  non-shared local reference  normal memory access 
•  easy to expand this concept to private but external memory access 

–  again by page 

•  Local vs. external reference main memory access 
  both go through the associated memory controller 

  remote accesses  
»  local remote memory controller 

•  for me or not 
–  if not send an access “message” to the appropriate controller 

»  note strange coupling 
•  unified memory but with an interconnect 

•  both memory and interconnect get involved 
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CC-NUMA/DSM Conceptual Change 

•  Unified main-memory address space 
  spread over N physical locations 

»  each with associated memory controller 

  terminology 
»  home node – place where the memory copy exists 

»  local node – originator of the memory request 

»  remote nodes – places where line copies are stored in a cache 

•  Temporal issues 
  transactions now may need to be remote 

»  even worse – may involve several distributed sites 

»  increased delay creates a problem 
•  illusion of coherency gets a bit harder to reliably control 

•  Interconnect load 
  potential for lots of “coherence” messages 

»  increased contention, power, and delay 
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Local vs. Global State 

•  Local 
  similar to SMP model 

»  MSI, MESI, … (lots of options) 

•  Global – distributed  new issue 
  write-invalidate example 

»  uncached – no processor has a copy so get it from main mem 

»  shared  
•  keep list of sharers – memory still has a valid copy 

»  exclusive 
•  node X has the only valid copy 

–  memory may be inconsistent 
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Implementing DSM 

•  Atomicity 
  no longer observed by all since snooping doesn’t work 

  atomicity point is now the directory 
»  all nodes need to know about this order 

»  hence messages sent to participant 
•  question is how 

•  2 interacting FSM’s w/ additional delay 
  global @ home node 

  local @ caches holding a shared copy 

  delay complications 
»  some requests may not succeed 

•  multi-person group analogy 
–  req: “hey I need a piece of your time @ X 

–  response: “Nope I can’t do it” 

•  several issues 
–  requests can be pending 

–  or they can be instantly ACK’d or NACK’d by the directory 
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Message Types 

•  Write-Invalidate protocol example 
  WI is common but WU possible 

»  suggestion: think about the differences 
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Local FSM 

•  Sources 
  local processor requests in bold 

  directory requests in normal font 
  MSI protocol (E=M in this FSM) 

10 CS6810 
School of Computing 
University of Utah 

More Detail: Read Miss to M block 

Cache to Cache 
Copy Style 
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Read Miss Analysis 

•  Races 
  no problem for single requester 

  4a and 4b is non-critical if directory does the right thing 

•  Missing 
  concurrent requests for same block 

»  ordering at the directory 
•  one gets seen as first – others? 

–  what do you do 

–  queue until 4b or NAC 2nd request 

–  NACK is easiest 

12 CS6810 
School of Computing 
University of Utah 

Write Miss to Clean Copy 
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Additional Considerations 

•  Local node may also be home 
  MA duties 

»  shared and local  message to the directory 

»  private  normal memory access 
•  either local or remote  

•  overload MA 
–  handles inter- and intra-node traffic 

–  priority? 

•  NACKS 
  directory needs to keep track of pending transactions 
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Scalability 

•  Performance 
  lots of coherence messages 

»  contention in interconnect causes additional delay 
•  more on this later 

•  Meta-data (directory) = directory size 
  full map – 1 bit per sharer held in directory 

»  64 P’s and 64B line 
•  8 directory bytes = 12.5% 

»  256 P’s = 50% OUCH! 

»  1024 P’s = 200% UNACCEPTABLE 

  other options 
»  lots of sharers are rare 

•  keep small-num ID’s 
–  pointer to extended list 

•  distributed linked list 
–  too much delay and traffic 
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Protocol Optimization Example 

•  Remote node has an exclusive copy 
  flat main memory 
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Optimizations II 

•  Write miss to 3 sharers* 
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Miss Rate vs. Processor Count 
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Miss Rate vs. Cache Size 
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Miss Rate vs. Block Size 
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Memory Pressure vs. Block Size 
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Latency ala SGI Origin O3K 

•  500 MHz CPU 
  model lacks contention and occupancy effects 

»  e.g. measured unloaded – hence best case 

»  DSM has striking impact on communication load 
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DSM Coherence vs. Synchronization 

•  DSM coherence 
  assuming the programmer got it right 

»  DSM coherence keeps the shared memory illusion alive 

•  Real concurrency has potential problems 
  concurrent writers is the main issue 

»  other hazards also apply RAW, Wax 

  hence synchronization is also needed 
»  locks or semaphores are the norm 

»  who’s responsible 
•  ultimately some burden is on the programmer 

•  system software or hardware support may provide better API’s 
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Synchronization 

•  3 components for lock support 
  acquire method 

  waiting method if acquire fails 
»  spin/busy wait: problem is occupancy 

•  consumes power and displaces other processing 

»  blocking wait: support of wake-up is needed 

»  which is better? 
•  depends on wait time 

–  short then spin 

–  long then block 

–  how do you know? 

  a release method 

•  Obvious goal 
  mutual exclusion for the critical section 

»  what’s the key to getting this right? 

•  Are locks enough? 
  hint: consider blocked MATMUL, Ocean, … 
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Lock Atomicity 

•  Hardware 
  seen in older machines like Cray XMP 

»  lock registers 
•  global resource but located in one atomic place 

–  get there first and win 

»  bus lock lines in BSP 
•  bus arbiter is the atomicity point 

•  Memory location 
  must be shared 

»  same atomicity issue as CC-DSM 

»  what’s the issue here? 

•  Key 
  hardware must provide some atomicity support 

»  bus arbitration 

»  directory & interconnection network 
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Hardware Atomicity Support 

•  Read-Modify-Write 
  more of an interconnect property than an instruction set

 issue 
»  bus 

•  hold bus after read, modify if unlocked, release bus 

•  problems 
–  holding bus increases bus bottleneck likelihood 

»  distributed interconnect 
•  ideas? 

•  Test & Set instruction 
  read value but set location to 1 ( 1 locked) 

»  less occupancy than RMW 

»  if return value is 1 then previous lock exists so try again 

  other variants 
»  swap: exchange register value with a memory location 
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Lock Algorithm Goals 

•  Low latency 
  quick when not contention 

  slower if there’s competition – fact of life 

•  Low occupancy 
  minimize amount of interconnect traffic 

•  Scalability 
  no worse than linear traffic and latency increase 

•  Low storage overhead 
  minimize meta-data 

•  Fairness 
  hard to be truly fair 

  redefine as starvation free 
»  e.g. guarantee that requester will never wait forever 
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DSM Locks 

•  e.g. SGI LL & SC instructions 
  Load locked and store conditional 

»  LL loads the shared synchronization variable or lock 

»  SC writes it back if no intervening invalidate 
•  SC success is indicated by a condition flag 

–  fail if write to invalid line 

–  succeed if write to valid line 

»  What’s the problem? 
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DSM Locks 

•  e.g. SGI LL & SC instructions 
  Load locked and store conditional 

»  LL loads the shared synchronization variable or lock 

»  SC writes it back if no intervening invalidate 
•  SC success is indicated by a condition flag 

–  fail if write to invalid line 

–  succeed if write to valid line 

»  What’s the problem? 
•  2 kinds of invalidates 

–  DSM invalidate works just fine 

–  victimized invalidate – oops 

–  replacement policy 

–  never invalidate a LL line 

–  requires a tag bit 

–  mark victimized invalidate 

–  requires a tag bit 
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More Advanced Goals 

•  Reduced contention? 
  need some back-off model to desynchronize 

»  e.g. ethernet exponentional back-off idea 

•  On lock release 
  #1 have only one waiting process try for the lock 

»  also reduces contention 

  #2 have only one waiting process incur a read miss 

•  Enter more advanced protocols 
  ticket lock does #1 

  array based lock does both 

  both are fair in that they effectively create a FIFO grant
 order 
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Ticket Lock 

•  Take a number  
  each process reads lock and gets next number 

»  from a number serving variable  

»  next requester invalidates you but you have your number 

  read the “now serving” variable 
»  normal reads so no invalidation until the number changes 

»  read your number then go 

  release 
»  update the now-serving number 

»  “fetch & increment” 
•  one instance of fetch & op hardware support 

  optimization 
»  delay next read based on difference between 

•  your number and “now serving” variable 
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Array Based Lock 

•  Get location rather than value 
  p processes/threads  p locations 

»  essentially a queue 
•  pad array to get one location per cache line 

–  reduced invalidations 

–  increased storage overhead 

–  good until p gets huge 

»  when your location goes to 1 you get the lock 
•  release sets next owners location to 1 

•  change in shared line value invalidates next owner’s line 

•  What happens when lock request is in a loop 
  locations may wrap around 

»  sense bit is shared 
•  all 1’s were written so now it’s time to look for a 0 as success 
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Barrier’s 

•  The other useful synchronization 
  all participants must arrive before any can leave 

  useful for phase exchange 
»  internal and then update boundary values 

»  exchange boundary values 
•  e.g. Ocean 

•  HW support  
  fetch and decrement 

»  n participating – initialize barrier to n-1 
•  participant arrival – decrement barrier variable 

»  problem – every arrival invalidates all lines 
•  improvement – barrier monitor 

–  sets a second line value indicating arrival 
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Implications for Software 

•  Computation phases 
  maximize locality and minimize interconnect traffic 

•  Data allocation 
  pad to  

»  minimize false sharing & align on cache line boundary 

»  particularly important for arrays 

•  Conflict misses 
  keep data set for a phase in non-conflicting locations 

•  Minimize delay 
  may involve extra copies to keep a private local version 

  may involve recomputing  
»  if cheaper than getting value remotely 
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Concluding Remarks 

•  For large parallel machines 
  DSM may have become extinct 

»  SUN was the last to go 

»  IBM, Cray, HP, Dell, … move to message passing 
•  hardware is simplified and power is saved 

•  For small parallel machines 
  e.g. multi-core chips 

»  idea may still play well 

•  Where is the inflection point 
  it’s all about delay and energy cost 

»  long wires are the culprit 

  answer 
»  something to ponder 

»  nobody has provided a definitive model 


