Multiprocessors

Today’s topics:

Discuss midterm & course interaction level
Discuss HW4
Parallelism

via threads, cores, and/or processors

Flynn’s taxonomy

basic organizational issues
Application Parallelism

some simple examples

School of Computing

University of Utah 1 C86810

V)

The Midterm

o A lot of theory” say some
= Al's view - not really these basic concepts are what you’ll
retaln
» equations you can always look up If you don’t remember
» Iu::t conceptual issues will mark you as architecturally savy or
n
+ If you have to look these up It will be embarrassing
* Surprised at some questions
= after HW3 the branch prediction question should have been
a cake walk
* We need to change how we interact
= | need to talk less and you need to talk more
= it will take effort from both sides
» ask questions If you don’t understand - make me explain
» 1 ask questions to get a pulse - but often there are no takers
* we need to fix this

¢ A brief review of the solutions

School of Computing

University of Utah 2 Cs6810

U)

HwW4

* WIll employ a tool called “CACTI 6.5

= released last week form HPL and installed yesterday on the
CADE machines

¢ 4 questions — none are trivial
= you’ll need to formulate experiments to run using CACTI

= you’ll need to Interpret the data and draw conclusions
hick the questi

* Not your typical homework - start NOW!
= more similar to a research endeavor
» as grad students this should be your future
* Focus
= introduce you to a valuable research tool
= give you some scope on a critical future area
» e.g. he, and 'y organization

» introduce real delay and power/energy
+ mostly underplayed in your text

School of Computing

Unlversity of Utah 3 CS6810

V)

The Greed for Speed

* It’s always been about parallelism
= earlier - hardware & hidden from programmer
= today - parallel cores, multiple sockets
» and multiple threads per core
¢ Change in usage
= mobile “average user”
» use small dweeby light thing - cell phone, laptop, whatever
» grad students in CS or CE aren’t part of this
= tons of data
» and Googl cars are everywhere
= heavy welght computing Is done elsewhere
» data-center
» the “Cloud” - SETI@home gets a new name - whatever
» supercomputers

+ check out www.top500.0rg
- IBM Roadrunner

- Cray Jaguar

School of Computing

Unlversity of Utah 4 CS6810

V)

Page 1

What Changes

* Arlo
= 4jt’s an organization”
» organizational problems
+ what to share vs. keep private
* how to communicate
* management overhead
* 3 basic components
= core - it’s getting simpler
» primarilly due to power Issues & there are lots of them/socket
= memory
» cache
+ shared on socket at L2 or L3 level
» main
+ also shared in a couple of options
= interconnect
» specialized in sup p ter/HPC land
» commodity (a.k.a. fast ethernet) In cluster land

School of Computing

University of Utah s C86810

V)

Today’s Similarities

I prl

¢ Micropr
= today’s uP’s: multi-threaded and multi-core
¢ Interconnect and memory system varies
= hut It’s all about communication
» y may be di
» communication may be
+ via shared memory (implicit)
+ or based on message passing (expliclt)
« or both
= power is a dominant concern
» all those long wires frequently used
» becoming a concern In the national energy footprint
* Lots of options
= today we’ll look at the high level

or local

= & decode some of the t of Babel acronyms that are In
common use
School of Computing
U] University of Utah s Cs6810

Application Parallelism

* Multl-processing
= processes each run in their own protected virtual address
space
» lots of rhead to pi that protecti
» communlcate via explicit mechanisms
* pipes, sockets, etc.
¢ Multi-threading
= share virtual address space
= Wax hazard avoldance
» via
« barrler, semaphore, etc.
* Confusion
= both may be inter-twined into the thread or processor term
» 1 core 2 threads
* run two processes or two threads

= add multiple sockets and life gets even more fuzzy

School of Computing

University of Utah 7 CS6810

V)

Flynn’s Taxonomy (1972)

* Too simple but the only one that moderately works
= taxonomy of parallel machines is a bit of a red herring
» doesn’t work as well as In the plant and animal worlds
» ch In p Isn’t that “genetic”
* (Single, Multiple) X (Data stream, Instruction stream)
= SISD - the killer uP of old
» gone In the mailnstream segment
= SIMD
» llilac IV - the original supercomputer
. too and
» today alive and well data p
* vector Ing, media
+ wide SIMD is the theme for GPGPU’s
= MISD
» nothing 1al — ol
= MIMD
» explolts TLP — hence the focus of much of the Industry

utllization

(SSEn, Altivec)

t was HT Kung’s INARP @ CMU

School of Computing

Unlversity of Utah 8 CS6810

V)

Page 2

SMP Memory Organization

* Main memory shared by all cores
= private caches
¢ UMA - uniform memory access
= all processors see the same memory org.
» hence the SMP moniker

* How well does It scale
= for small core counts - not too bad
» banking and a good interconnect helps

» large h Id red tention on the Interconnect
= for large core count - unlikely win
» power d In Int t will be pi itive
. the

+ only option Is add complexity and power to mitigate
- unacceptable option with high core counts
» delay and area costs on chip will constrain performance
« area ls a seml-zero-sum game

SMP/UMA Example

!DJ School of Computing

University of Utah ° C86810

PO P1 o 0 0 Pn

$ $ $
I 1 |
Interconnect (Bus, Crossbar, Multistage, ...)

100 (o ¢ of 10i SMo M| o060 |SMk

Early examples: Burroughs BSP, Sequent Symmetry S-81

!DJ School of Computing

University of Utah 10 Cs6810

DSM/NUMA Organization

* Higher core counts

= distribute memory but shared access 9 DSM
» now have local vs. non-local references
* NUMA
» compatible with multiple sockets and multiple MC’s/socket
= new problem
» memory chunks now local to some socket or MC

+ messages must be sent over for
Processor Processor Processor Processor
& Caches & Caches & Caches & Caches

g [[[—r

‘ Interconnection network ‘

Extending the Hierarchy

mj School of Computing 1 CS6810

University of Utah

* NUMA opus 2
= e.g. UlUc Cedar, CMU’s CM* & C.mmp

= -

I Global Interconnect |

o o o
Today - nodes

can be SMP’s or
CMP’s

e.g. SUN, Com-
paq, IBM
School of Computing
mj Unlversity of Utah 12 CS6810

COMA - the Lunatic Fringe

* Treat all memory as cache

* e.g. KSR-1 (which died at 1)

Interconnect

D]l |l [D]
e o o
[P [P] [P]

Directory

Cache

Processor

V)

School of Computing
University of Utah

Cs6810

Cache Organizations

* Possible that caches can be shared as well
= issue of coherence
» CC-NUMA vs. NCC-NUMA
= CC-NUMA SMP

» snooping protocol and bus to maintain coherence

+ cache to cache transfers
- detalls next lecture

= CC-NUMA DSM
» notion of home node
» global vs. local state of the line

* MESI, MOESI, MSI varlants
- detalls next week

= NCC-NUMA
» no cache Impact Just DSM/NUMA
¢ More acronyms
= UCA - banked cache
= NUCA - distributed he, p Ibly banked

!DJ School of Computing

University of Utah 14

Cs6810

NORMA

* Message-Passing

= e.g. FAIM-1, Mayfly, Cosmic Cube, Ncube, iPSC,
= Beowulf clusters, easy to make

e

Message
Passing
Interconnect
(binary n-cubes, meshes, torii,
and you name it)

V)

School of Computing
University of Utah

CS6810

Programming Models

* Shared Memory
= CC-NUMA/NUCA
= famlllar model w/ implicit communication

» downslde - easy to obtain h perfor
» upside is no OS involvement
» ication is happening and it takes time

» p

when

» programmer
* Message passing
= no cache coherence 2 simpler hardware
= explicit communication
» +: programmer designs It Into a good algorithm
« visible In restructuring code
» = prog
+ OS tends to want to be In the way
. del of cholce for today P! put
» MPI, Open-MP, MCAPI

mj School of Computing 16

University of Utah

CS6810

Page 4

Duality

Parallel Performance Scalability

* Shared memory on top of message passing
= no problem
» lots of software packages have done this
» e.g. MUNIN and descendants at RICE
= IBM SP-2 had a library
¢ Message passing on top of shared memory
= also no problem
= $GI Origin 2000 actually beat the SP-2 doing Just this
» why?

» remember that OS overhead issue

* AmdahPs law in action
= enhanced = parallel component
= example 1: code centric

» 80% of your code is parallel
* best you can do Is 5x speedup H parallel part goes to 0
= example 2: speedup centric
» want 80x speedup on 100 pi
* fractlon,,ancea = -9975
« this will be hard

* Linear speed up is hard
= unless “embarrassingly parallel” threads
= no depend or peration
* Superlinear speed up is easier
= lots more memory so no paging
= b e of these clal In the literati

School of Computing School of Computing
W) university of Utah 7 cses10 W) university of Utah 18 csea10
Parallel Workloads Effort Variation
* Highly varying + Commerclal workload on a 4 processor server
= resource utilization: cores, threads, y, inter t
= slight architecture change > blg performance change Benchmark % time in | % time in % time
user mode | kernal mode | CPU idle
* 3 workload examples
« commerclal oLTP 7 18 1
» OLTP - TPC-B DSS range for all 6 Queries 82-94 35 413
» D88 - TPC-D DSS average 87 3.7 9.3
» Web index search (AltaVista and a 200GB database) AltaVista 508 P2 a

= multiprogrammed & 0S
» 2 indep il of A file sy
» bound (;) & 1/0 bound (Install and
remove flles)
= scientific
» FFT, LU, Ocean, Barnes

¢ Multiprogrammed & OS on 8 processors

mj School of Computing 19 CS6810

University of Utah

Synch CPU idle
User Kernel i i¢ (/O wait)
% instructions xeq'd |27 3 1 69
% xeq time 27 7 2 64
School of Computing
mj Unlversity of Utah 20 CS6810

FFT

* 1 D complex numbers

LU

* Typical dens matrix factorization

= 3 data structures: in, out, and read-only roots matrix = used in a variety of solvers & eig | putations
= steps * Turn matrix into upper diagonal matrix
» transpose input data matrix = blocking helps code to be cache friendly
Qi + Block size
» trans; data matrix = small enough to keep cache miss rate low
» 1D FFT on each row of data matrix = large enough to maximize parallel phase
» transpose data matrix * Synopsis
= communication = this one scales well
» all to all communication in the three transpose phases
+ each processor transposes one local block and sends It to each
other processor
¢ Synopsis
= communication bound & tends to scale badly
School of Computing School of Computing
W) university of Utah 7 cses10 W) university of Utah 2 csea10
Ocean Ocean Model
* 3D weather modeling
= 75% of earth’s surface is ocean 33434343
» major weather Impact
» eddy effect Is significant
= 4D problem
» 3D physical space + the time dimension
= model
» set of y space point:
» simplify Into a set of 2D planes
* more difficult but
- both take ime
- llustrative of tho baslc lssucs Rectangular basin = 3D
simplify = 2d plane set
separate 2d array for each variable
equal spaced points
continuous ==> discrete
School of Computing 23 CS6810 mj School of Computing 24 CS6810

V)

University of Utah

University of Utah

Page 6

Ocean Benchmark

* Data
= 2D arrays for each variable
= all arrays model each plane
* Time
= solve set of motion equations
= sweep through all points per time step
= then move to next time step
¢ Granularity
= big influence on compute time
» 2M mlles x 2M mlles = Atlantic Ocean

» points @ 1 km spacing & 5 years of 1 minute time steps

. 2';10 M steps x 4M points - Intractable now but maybe not In the
ture

School of Computing
U] University of Utah bl Cs6810

Ocean Decomposition

2 Model the weighted nearest neighbor average
o Alijl = 0.2 x (Alig] + Alij-1] + A[i-14] + Alij+1] + Ali+1j]

% dio e Evolve the sequential algorithm

e 10 2 bogus once again - little parallelism

oy it Note the anti-diagonal option (orthogonal to
-0 resultant dependence vector)

0 08 Ot Control and Load Imbalance Issues??

Red Black Decomposition
Dependencies?
Parallelism?
Convergence properties?

!”J School of Computing

University of Utah 26 Cs6810

Ocean Decomposition

* slde effect of grid based solver
= perimeter vs. area

0000000000000000
Po|[P1| Py | Ps /Z 3 T
Py P71 ¢ > np
Ps Py 1
Py Pis 0883222222222223

2
Local Work o=
?

~ — 4n
Remote Communication o.—
Jp

School of Computing
mj Unlversity of Utah 27 CS6810

Blocking for Cache Locality

gA a o

0000000000000 5 :

O0000000000O0Q O0000000O0O0O0OO

0000000000000 0000000000000000
mindless 2D version Kernel 2D inside 2D = 4D arrays

* consider cache effects
* spatial and temporal locality
¢ other effects
* blocks can also be influenced by processor partition
« particularly useful if address space is shared as in a DSM machine

* boundary problems?

School of Computing
@J University of Utah 28 CS6810

Page 7

Boundary Issues

* Assume row-major order (think C) allocation
= column lines will have poor spatial locality

[0co0doooo

00000000
OO0 OO OO
o]e ojojole SIS
(0]e; ojejele, o)e)
[0]e) 0101016, 0]
00000000
00000000

School of Computing

University of Utah 29 C86810

V)

Barnes-Hut

+ Simulates evolution of galaxies
= class N-body gravitation problem
* Characteristics
= no spatlal regularity so putation Is particle based
= every particle influences every other particle
» 0(n?) complexity - UGHIy
» cluster distant star groups into one particle
« based on center of mass since

M 1 M P
2
r

« simplifies complexity to O(n log n)
+ close stars must be handled Individually

Gravitational Force = G

School of Computing

University of Utah 30 Cs6810

U)

Oct-tree Hierarchy

* 3D galaxy representation
= 8 equally sized children
» based on equal space volumes
= tree traversed once per bhody to determine force
= bodies move so rebuild tree on every step
* Group optimization
= If cell Is far enough away
» Ud <x
+ 1 m cell side length, d = distance from cell center
*xls - betv tand1.2
» then treat as single body
» otherwise open cell and proceed

School of Computing

Unlversity of Utah 3 CS6810

V)

2D Quadtree lllustration

'Y L]
[]
°o|®
® °
L] []
» e
L
[]
° L]
[]
° L]
. . '
° QuadTree Equivalent

Each non-leaf has center of mass for
the group

2D Spatial Decomposition)
Each leaf has mass, velocity, etc.

School of Computing

Unlversity of Utah 32 CS6810

V)

Page 8

Algorithm Flow

Scientific Workload Scaling

Computation C cati Compute/
Application Scaling ,omxsnuiflca ton Communicate
per processor caling Scaling
Y FFT (nlog n)ip nip logn
compute forces dominant build tree w np
phase n n
compute cell Jp Jp
y moments _ _
up Tate ¥ Barnes (nlog n)ip approximately approximately
properties traverse tree| Jnloen dn
* Jp
. comp. forces
time steps
Ocean np
i i
Jr Jr
School of Computing School of Computing
W) university of Utah 3 csee10 W university of Utah 3 €s6810
Concluding Remarks
* Lots of diversity In parallel systems
= architecture style
» Y, Int and p XU’s
= application space
» any huge problem has lots of parallelism
* but what type data vs. control
» programming model
* message passing vs. shared memory
= mapping
» who does It
* prog 0s,
« all are hard
= result
» blg dif In how are used
» there’s always a bottleneck
« trick Is to flgure out how to reduce It
UJ School of Computing 35 CS6810

University of Utah

Page 9

