
Page 1

1 CS6810
School of Computing
University of Utah

Multiprocessors

 Today’s topics:

Discuss midterm & course interaction level

Discuss HW4

Parallelism

 via threads, cores, and/or processors

 Flynn’s taxonomy

 basic organizational issues

Application Parallelism

 some simple examples

2 CS6810
School of Computing
University of Utah

The Midterm

•  “A lot of theory” say some
  Al’s view – not really these basic concepts are what you’ll

 retain
»  equations you can always look up if you don’t remember

»  but conceptual issues will mark you as architecturally savy or
 not

•  if you have to look these up it will be embarrassing

•  Surprised at some questions
  after HW3 the branch prediction question should have been

 a cake walk

•  We need to change how we interact
  I need to talk less and you need to talk more

  it will take effort from both sides
»  ask questions if you don’t understand – make me explain

»  I ask questions to get a pulse – but often there are no takers
•  we need to fix this

•  A brief review of the solutions

3 CS6810
School of Computing
University of Utah

HW4

•  Will employ a tool called “CACTI 6.5”
  released last week form HPL and installed yesterday on the

 CADE machines

•  4 questions – none are trivial
  you’ll need to formulate experiments to run using CACTI

  you’ll need to interpret the data and draw conclusions
 which answer the question

•  Not your typical homework – start NOW!
  more similar to a research endeavor

»  as grad students this should be your future

•  Focus
  introduce you to a valuable research tool

  give you some scope on a critical future area
»  e.g. register, cache, and memory organization

»  introduce real delay and power/energy
•  mostly underplayed in your text

4 CS6810
School of Computing
University of Utah

The Greed for Speed

•  It’s always been about parallelism
  earlier – hardware & hidden from programmer

  today – parallel cores, multiple sockets
»  and multiple threads per core

•  Change in usage
  mobile “average user”

»  use small dweeby light thing – cell phone, laptop, whatever

»  grad students in CS or CE aren’t part of this

  tons of data
»  sensors and Google camera cars are everywhere

  heavy weight computing is done elsewhere
»  data-center

»  the “Cloud” – SETI@home gets a new name – whatever

»  supercomputers
•  check out www.top500.org

–  IBM Roadrunner

–  Cray Jaguar

Page 2

5 CS6810
School of Computing
University of Utah

What Changes

•  Arlo
  “it’s an organization”

»  organizational problems
•  what to share vs. keep private

•  how to communicate

•  management overhead

•  3 basic components
  core – it’s getting simpler

»  primarily due to power issues & there are lots of them/socket

  memory
»  cache

•  shared on socket at L2 or L3 level

»  main
•  also shared in a couple of options

  interconnect
»  specialized in supercomputer/data-center/HPC land

»  commodity (a.k.a. fast ethernet) in cluster land

6 CS6810
School of Computing
University of Utah

Today’s Similarities

•  Microprocessor based
  today’s uP’s: multi-threaded and multi-core

•  Interconnect and memory system varies
  but it’s all about communication

»  memory accesses may be distant or local

»  communication may be
•  via shared memory (implicit)

•  or based on message passing (explicit)

•  or both

  power is a dominant concern
»  all those long wires frequently used

»  becoming a concern in the national energy footprint

•  Lots of options
  today we’ll look at the high level

  & decode some of the tower of Babel acronyms that are in
 common use

7 CS6810
School of Computing
University of Utah

Application Parallelism

•  Multi-processing
  processes each run in their own protected virtual address

 space
»  lots of overhead to provide that protection

»  communicate via explicit mechanisms
•  pipes, sockets, etc.

•  Multi-threading
  share virtual address space

  Wax hazard avoidance
»  via synchronization mechanisms

•  barrier, semaphore, etc.

•  Confusion
  both may be inter-twined into the thread or processor term

»  1 core 2 threads
•  run two processes or two threads

  add multiple sockets and life gets even more fuzzy

8 CS6810
School of Computing
University of Utah

Flynn’s Taxonomy (1972)

•  Too simple but the only one that moderately works
  taxonomy of parallel machines is a bit of a red herring

»  doesn’t work as well as in the plant and animal worlds

»  change in computer structures isn’t that “genetic”

•  (Single, Multiple) X (Data stream, Instruction stream)
  SISD – the killer uP of old

»  gone in the mainstream segment

  SIMD
»  Illiac IV – the original supercomputer

•  broadcast too expensive and resource utilization problem

»  today alive and well (exploits data parallelism)
•  vector processing, media instructions (SSEn, Altivec)

•  wide SIMD is the theme for GPGPU’s

  MISD
»  nothing commercial – closest was HT Kung’s iWARP @ CMU

  MIMD
»  exploits TLP – hence the focus of much of the industry

Page 3

9 CS6810
School of Computing
University of Utah

SMP Memory Organization

•  Main memory shared by all cores
  private caches

•  UMA – uniform memory access
  all processors see the same memory org.

»  hence the SMP moniker

•  How well does it scale
  for small core counts – not too bad

»  banking and a good interconnect helps

»  large caches should reduce contention on the interconnect

  for large core count – unlikely win
»  power consumed in interconnect will be prohibitive

•  common interconnect becomes the bottleneck

•  only option is add complexity and power to mitigate
–  unacceptable option with high core counts

»  delay and area costs on chip will constrain performance
•  area is a semi-zero-sum game

10 CS6810
School of Computing
University of Utah

SMP/UMA Example

Early examples: Burroughs BSP, Sequent Symmetry S-81

11 CS6810
School of Computing
University of Utah

DSM/NUMA Organization

•  Higher core counts
  distribute memory but shared access  DSM

»  now have local vs. non-local references
•  NUMA

»  compatible with multiple sockets and multiple MC’s/socket

  new problem
»  memory chunks now local to some socket or MC

•  messages must be sent over interconnect for remote accesses

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

12 CS6810
School of Computing
University of Utah

Extending the Hierarchy

•  NUMA opus 2
  e.g. UIUc Cedar, CMU’s CM* & C.mmp

Page 4

13 CS6810
School of Computing
University of Utah

COMA – the Lunatic Fringe

•  Treat all memory as cache
  e.g. KSR-1 (which died at 1)

14 CS6810
School of Computing
University of Utah

Cache Organizations

•  Possible that caches can be shared as well
  issue of coherence

»  CC-NUMA vs. NCC-NUMA

  CC-NUMA SMP
»  snooping protocol and bus to maintain coherence

•  cache to cache transfers
–  details next lecture

  CC-NUMA DSM
»  notion of home node

»  global vs. local state of the line
•  MESI, MOESI, MSI variants

–  details next week

  NCC-NUMA
»  no cache impact just DSM/NUMA

•  More acronyms
  UCA – banked cache

  NUCA – distributed cache, possibly banked

15 CS6810
School of Computing
University of Utah

NORMA

•  Message-Passing
  e.g. FAIM-1, Mayfly, Cosmic Cube, Ncube, iPSC, ….

  Beowulf clusters, easy to make

16 CS6810
School of Computing
University of Utah

Programming Models

•  Shared Memory
  CC-NUMA/NUCA

  familiar model w/ implicit communication
»  downside – easy to obtain horrible performance

»  upside is no OS involvement

»  communication is happening and it takes time

»  hardware handles protection

»  programmer handles synchronization when necessary

•  Message passing
  no cache coherence  simpler hardware

  explicit communication
»  +: programmer designs it into a good algorithm

•  visible in restructuring code

»  -: increased programmer burden
•  OS tends to want to be in the way

  model of choice for todays supercomputers
»  MPI, Open-MP, MCAPI

Page 5

17 CS6810
School of Computing
University of Utah

Duality

•  Shared memory on top of message passing
  no problem

»  lots of software packages have done this

»  e.g. MUNIN and descendants at RICE

  IBM SP-2 had a library

•  Message passing on top of shared memory
  also no problem

  SGI Origin 2000 actually beat the SP-2 doing just this
»  why?

»  remember that OS overhead issue

18 CS6810
School of Computing
University of Utah

Parallel Performance Scalability

•  Amdahl’s law in action
  enhanced = parallel component

  example 1: code centric
»  80% of your code is parallel

•  best you can do is 5x speedup if parallel part goes to 0

  example 2: speedup centric
»  want 80x speedup on 100 processors

•  fractionenhanced = .9975

•  this will be hard

•  Linear speed up is hard
  unless “embarrassingly parallel” threads

  no dependence or cooperation

•  Superlinear speed up is easier
  lots more memory so no paging

  beware of these claims in the literature

19 CS6810
School of Computing
University of Utah

Parallel Workloads

•  Highly varying
  resource utilization: cores, threads, memory, interconnect

  slight architecture change  big performance change

•  3 workload examples
  commercial

»  OLTP – TPC-B

»  DSS – TPC-D

»  Web index search (AltaVista and a 200GB database)

  multiprogrammed & OS
»  2 independent compiles of Andrew file system

»  phases: compute bound (compile) & I/O bound (install and
 remove files)

  scientific
»  FFT, LU, Ocean, Barnes

20 CS6810
School of Computing
University of Utah

Effort Variation

•  Commercial workload on a 4 processor server

•  Multiprogrammed & OS on 8 processors

Page 6

21 CS6810
School of Computing
University of Utah

FFT

•  1 D complex numbers
  3 data structures: in, out, and read-only roots matrix

  steps
»  transpose input data matrix

»  1D FFT on each row

»  roots x data matrix

»  transpose data matrix

»  1D FFT on each row of data matrix

»  transpose data matrix

  communication
»  all to all communication in the three transpose phases

•  each processor transposes one local block and sends it to each
 other processor

•  Synopsis
  communication bound & tends to scale badly

22 CS6810
School of Computing
University of Utah

LU

•  Typical dens matrix factorization
  used in a variety of solvers & eigenvalue computations

•  Turn matrix into upper diagonal matrix
  blocking helps code to be cache friendly

•  Block size
  small enough to keep cache miss rate low

  large enough to maximize parallel phase

•  Synopsis
  this one scales well

23 CS6810
School of Computing
University of Utah

Ocean

•  3D weather modeling
  75% of earth’s surface is ocean

»  major weather impact

»  eddy effect is significant

  4D problem
»  3D physical space + the time dimension

  model
»  discrete set of equally space points

»  simplify into a set of 2D planes
•  more difficult convergence but simpler communication

–  both take time

–  illustrative of the basic issues

24 CS6810
School of Computing
University of Utah

Ocean Model

Page 7

25 CS6810
School of Computing
University of Utah

Ocean Benchmark

•  Data
  2D arrays for each variable

  all arrays model each plane

•  Time
  solve set of motion equations

  sweep through all points per time step

  then move to next time step

•  Granularity
  big influence on compute time

»  2M miles x 2M miles = Atlantic Ocean

»  points @ 1 km spacing & 5 years of 1 minute time steps
•  2.6 M steps x 4M points – intractable now but maybe not in the

 future

26 CS6810
School of Computing
University of Utah

Ocean Decomposition

27 CS6810
School of Computing
University of Utah

Ocean Decomposition

•  side effect of grid based solver
  perimeter vs. area

28 CS6810
School of Computing
University of Utah

Blocking for Cache Locality

Page 8

29 CS6810
School of Computing
University of Utah

Boundary Issues

•  Assume row-major order (think C) allocation
  column lines will have poor spatial locality

30 CS6810
School of Computing
University of Utah

Barnes-Hut

•  Simulates evolution of galaxies
  class N-body gravitation problem

•  Characteristics
  no spatial regularity so computation is particle based

  every particle influences every other particle
»  O(n2) complexity – UGHly

»  cluster distant star groups into one particle
•  based on center of mass since

•  simplifies complexity to O(n log n)

•  close stars must be handled individually

31 CS6810
School of Computing
University of Utah

Oct-tree Hierarchy

•  3D galaxy representation
  8 equally sized children

»  based on equal space volumes

  tree traversed once per body to determine force
  bodies move so rebuild tree on every step

•  Group optimization
  if cell is far enough away

»  l/d < x
•  l = cell side length, d = distance from cell center

•  x is accuracy parameter – typically between .t and 1.2

»  then treat as single body

»  otherwise open cell and proceed

32 CS6810
School of Computing
University of Utah

2D Quadtree Illustration

Page 9

33 CS6810
School of Computing
University of Utah

Algorithm Flow

34 CS6810
School of Computing
University of Utah

Scientific Workload Scaling

35 CS6810
School of Computing
University of Utah

Concluding Remarks

•  Lots of diversity in parallel systems
  architecture style

»  memory, interconnect, and processor XU’s

  application space
»  any huge problem has lots of parallelism

•  but what type data vs. control

»  programming model
•  message passing vs. shared memory

  mapping
»  who does it

•  programmer, compiler, OS, hardware

•  all are hard

  result
»  big difference in how resources are used

»  there’s always a bottleneck
•  trick is to figure out how to reduce it

